TEPCO's Challenges for Occupational Exposure Reduction

-Installation of Additional CF in Fukushima Daiichi NPP-

Shunsuke HORI, Akira SUZUKI

Tokyo Electric Power Company Nuclear Power Plant Management Department Radiation Protection Group

ISOE International ALARA Symposium September 8-9, 2009, Aomori, JAPAN

Profile - Location

TEPCO's Nuclear Power Plants

Contents

- Occupational Exposure in NPP
- Measures for Reduction of Collective Dose
- Quality of Feed Water after Installation of Additional CF in Fukushima Daiichi Unit 6
- Collective Dose Estimation
- Secondary Effects by Reduction of CRUD
 Conclusions

Occupational Exposure in NPP (1/2)

Collective Dose per Reactor in Nuclear Power Station (BWR)

(2006 to 2008 Average)

Occupational Exposure in NPP (2/2)

Annual Collective Dose Trend per Plant in Japan

Measures for Reduction of Collective Dose(1/4)

Measures for Reduction of Collective Dose(2/4)

Measures for Reduction of Collective Dose(3/4)

Results of Dose Reduction Measures

Fiscal Year

① Oxygen injection

2 Use of low-cobalt material

③ Use of weatherproof steel in component materials for feed water and condensate

4 Control of feed water iron

(5) CF installation

Measures for Reduction of Collective Dose(4/4)

Quality of Feed Water

Collective Dose Estimation

Secondary Effects by Reduction of CRUD

Object	Effect	Cost Saving Object
Jet Pump	Efficiency Improvement	Electricity Cost
	Less Frequency of Cleaning	Cleaning Cost
C/D Resin	Life Extension	Replacement Cost
	Less Frequency of •Backwashing •Regeneration	Decommissioning Cost
		Water Treatment Cost Chemical Treatment Cost
Shutdown	Faster Drop in Temperature	High Operating Ratio

Conclusions

We have successfully reduced the concentration of feed water iron in Fukushima Daiichi Unit 6 by the installation of additional CF.

We'll continue to try to reduce occupational exposures by every possible measures after cost performance evaluations.

Support Documentation(1/5)

LPCP-out Iron Concentration Trend after CF Volume Increase

(Fukushima Daiichi Unit 6)

Support Documentation(2/5)

Support Documentation(3/5)

The concentration of Co-60 in the reactor water.

Support Documentation(4/5)

The concentration of the insoluble iron in the condensate water

Support Documentation(5/5)

Tokyo Electric Power Company -

Measures for Reduction of Collective Dose(2/4)

Reactor Primary System(BWR)

