HOT TOPIC REPORT OF BOTTOM HEADER DEFECTD, YGN 5 IN 2003

KOREA HYDRO AND NUCLEAR POWER COMPANY

Table of Contents

- General Description
- Concept of RX Vessel and Location of Defect
- Radiation Dose Control
- Repair Schedule of Bottom Header Defected
- Assessment of Shielding for Bottom Header Defected
- Estimated Collective Dose for Numbers of Personnel
- Conclusion

General Description

The mechanical department founded that three of eight thermal sleeves were separated from the safety injection nozzle during one cycle life of outage('03. 03. 17~05.28)

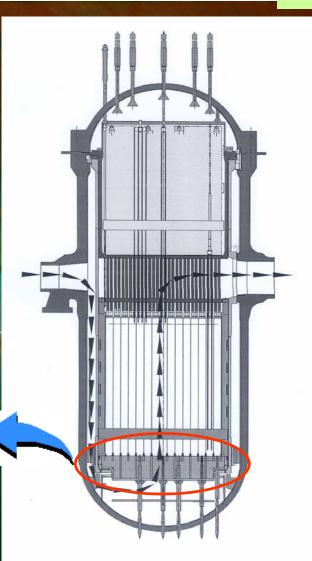
Damaged two location at the surface of RX Bottom

There is no problem in relation with RX vessel integrity

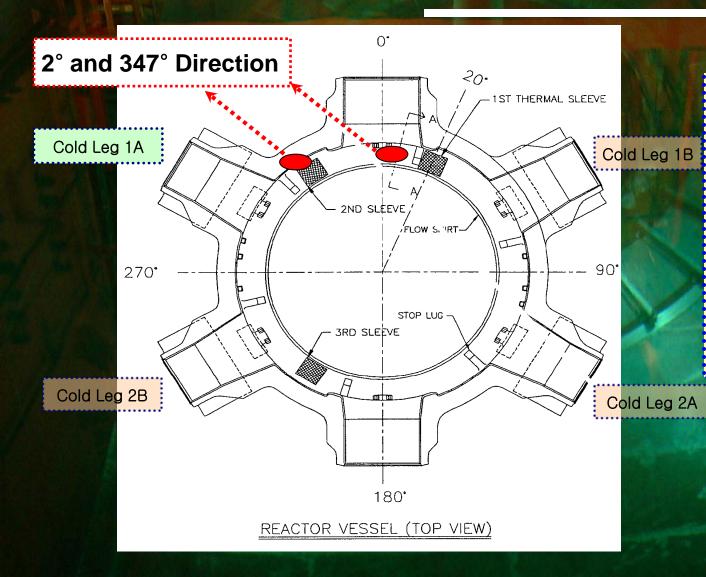
It is necessary to keep ALARA program both the aspect of appropriate time and the aspect of allowable limited exposure radiation

GENERAL ARRANGEMENT OF REACTOR COOLANT SYSTEM

Design of RX Vessel

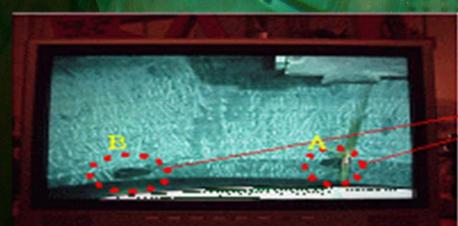

Rx vessel Upper Head= Closure Head - Lower Head= Bottom Head **Rx Vessel Body** Internals of RX – Core Support Structure – Lower Support Structure - Upper Guide Structure

FLOW PATH INSIDE RX


RX Inlet Nozzle

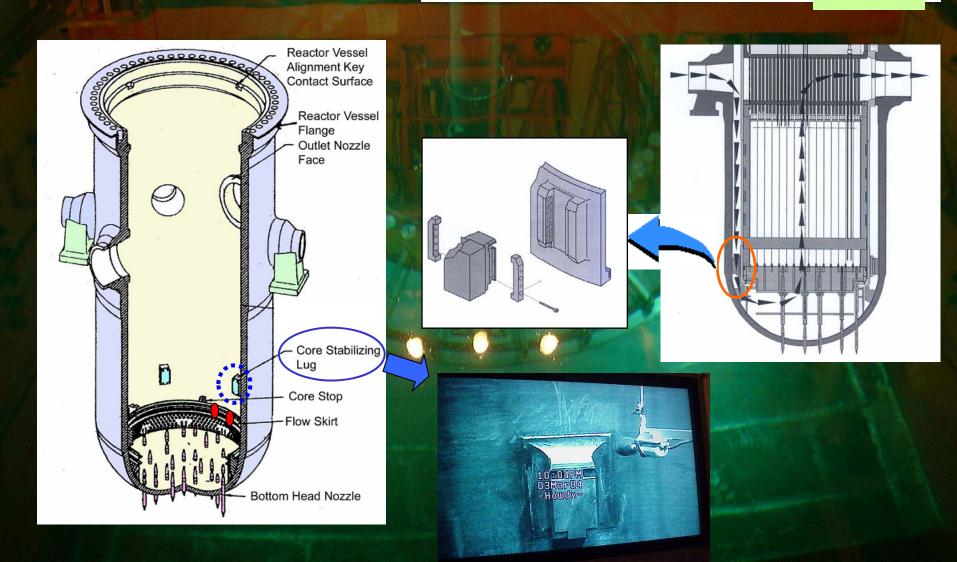
Flow Skirt
Fuel Assembly
RX Outlet Nozzle

Location of Bottom Head Defected



The total number of thermal sleeves : 7 EA - Cold leg : 4 Location - PZR Surge Line : 2 Location - Charging Nozzle : 1 Location A) The Photography for Bettom header defected at Rx Ves

The size of Bottom Head Defected


Location	Size c	Remark		
Of Defect	Length	Width	Maximum Depth	
# A	70		6.3	
# B	90	74	6.8	

The Photography for Bottom Head Defected

Isseessilen eff Defactad

Location of Bottom Header Defected

Radiation Dose Control

- Guide line radiation dose control in accordance with ICRP 60 ALARA program
 Emphasized upon two aspects both management of
 - radiation control and achievement of repairs successful
- It is expected to be taken total 459 man-hours and 55.8 Collective man-mSv

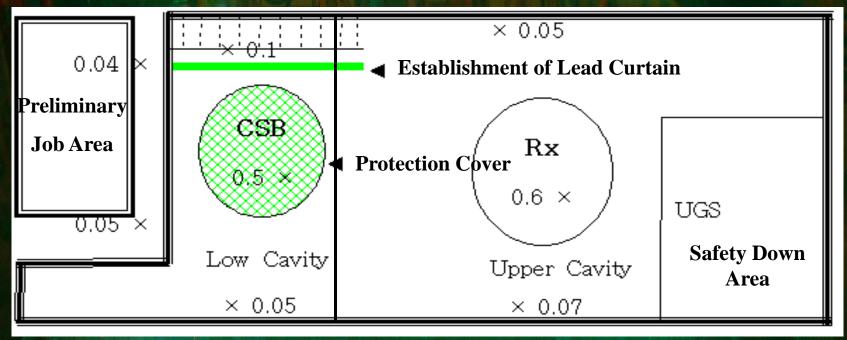
Radiation Dose Control

Radiation Instrument

Name : HI HI TELETECTOR
Model : IF104
Type : GM Tube
Range : 0.1mGy ~ 300Gy

RADIATION DOSE CONTROL

Radiation Instrument


Name : TLD
 Model : Harshaw 6600
 Type : 7776
 Range : 0 ~ 2000 rem

Name : ADR
Type : GM
Range : 0 ~ 100 rem

Survey of Radiation dose Around RX Cavity

RX Cavity with Full Water (140')

Unit:(mSv/hr)

Radiation Dose at RX Bottom Head Defected

Data of survey (Underwater Detector)

Surface		Location	Inside wall				Outside wall					
1m	RCB 116 ft		1st	2nd	3rd	TLD	ADR	1st	2nd	3rd	TLD	ADR
2m▶		Surface	2.8	2.7	3.0	4.0	4.0	8.4	3.4	1.5	3.5	5.8
3m		1m	4.2	4.4	4.2			1.3	1.6	1.1		
4m▶		1.9m	4.9	5.1	4.7	2.4	2.6	1.3	1.3	1.3	1.0	0.9
5m		3m	5.1	4.3	5.2			3.0	2.8	2.1		
6m▶		3.9m	15.8	23.4	9.0	16.9	1.52	4.0	3.6	2.2	1.8	1.8
7m	3.5m	5m	44 Sv/hr	38 Sv/hr	89 Sv/hr		X	1,520	1,627	1,170		
9m		6m	5	.1m – 120	Sv			6,630	6,537	5,707		
	1.3m	7m	It'a im	nogaible	40		-	6,718	6,776	6,120		
		8m	It's impossible to measure dose rate more than 5.1m		. Stantes		7,442	6,947	6,500			
					142.4 Sv/hr	70.6 Sv/hr	3,620	3,546	7,880	3.42 Sv/hr	3.49 Sv/hr	

The Level of Radiation Dose Rate

Location of Survey	Maximum of Dose Rate (mSv/hr)	The survey monitor
The Upper Distance (10 cm) away from stabilizing Lug	1,902	
10.9 m Height Location from the inside bottom Head	2,500	Hi-Hi Telector (GM tube)
Around Side at 115 ft (standard elevation)	1.80	

Radiation dose rate between before and after shielding

Section	Before Shieding (mSv/hr)	After Shielding (mSv/hr)	Thickness Of Shielding(cm)	Reduction rate
Water		900	30	1/2.1
Tungsten	1,902	0.93	14	1 ,068
Iron		1.09	22	1/1,745

Repair Schedule of Bottom Header Defected

1. Manufacturer

a. Management : GENE company (General Electric Nuclear Energy)

b. Welding under water : UCC company (Underwater Construction

Corporation)

2. Procedure of Maintenance

The bottom Header defected will be conducted in accordance with the sealing welding under water and NDE procedure equipped with attaching seal plate after performing smoothly with Ring shaped

3. Total number of personnel(GENE/UCC) : twenty two people in number

a. Project Marger and Supervisor : three people in number

b. Engineer and Technician : six people in number

c. QA and QC : two people in number

d. Diver : eleven people in number

Repair Schedule of Bottom Header Defected

Norizontal Shielding

Horizon ta IShieldi

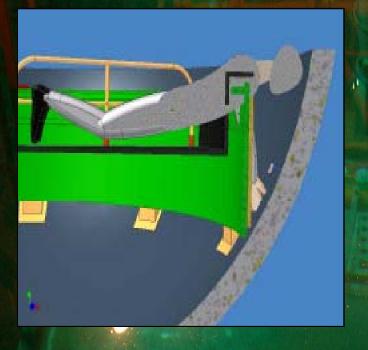
Divers Sled

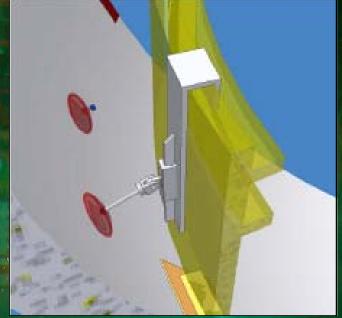
Divers Sled

- 1. It was removed internal RX structure from the elevation of 115 ft to the another Location
- 2. It was maintained water temperature of RCS under 90 ° F
- 3. It was maintained the elevation of water to the 123 ft
- 4. The tungesten of shielding was established to be decreased the level of high radiation in the surrounding of RX bottom defected.

Vertical Shielding

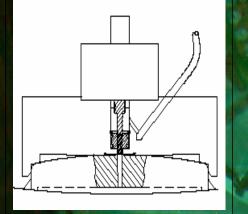
Status of Diver Shield Sled Establishment

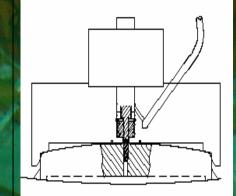


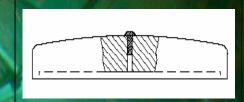


Ground Plan of Job Process

Status of Diver Shield Sled Establishment






Side view of job process

Establishment of Seal Plate

Procedure of Seal Plate Set Up

[Pic.1] Leak Test

[Pic.2] set up sealing pin

[Pic.3] job termination

The status of taking on a Diving suit

Assessment of shielding

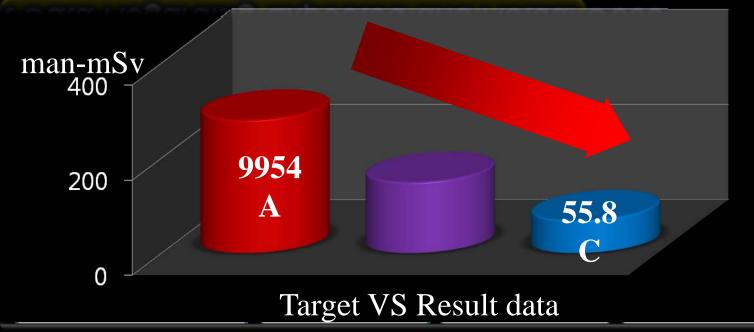
The Shielding Material for diver sled and shielding was made of tungsten metal taking into consideration various features such as the density of shielding material, strength, the thickness and effects

Materials : Density 10 with tungsten metal
 Shielding Thickness Over 140m(it maintains below 1.0 mS //hr after shielding)
 Shielding Range : 120°~360°

Total Estimated Collective Dose

1. Precondition of Calculation

- a. The Estimated collective Dose is evaluated in two aspects both without shielding material and with shielding material, the upper core stabilizing lug within a radius of 0° angle as Known the maximum radiation dose with 1,902 mSv/hr
- b. The Estimated working time for Diver : 11 man-hr the total time
- c. The Estimated working time for Assistant worker : 448man-hr
 - <7day × 8man × 8hr>
- d. The Estimated collective dose in Both the aspect of withouting Diver shielding sled and the aspect of with Diver shielding


Total Estimated Collective Dose

2. Estimated Collective Dose(55.8 man-mSv)

	Withc	outing diver shield	ing sled	With diver shielding sled				
Section	Section Dose rate maximum (mSv/hr) Estimated time (man-hr)		<u>Total</u> <u>collective</u> <u>dose</u> (man-mSv)	Dose rate maximu m (mSv/hr)	Estimated time (man-hr)	<u>Total</u> <u>collective</u> <u>dose</u> <u>(man-</u> <u>mSv)</u>		
Main worker	주1) 900.9	11	<u>9,909.9</u>	주3) 1.0	11	11		
Aux worker	주2) 0.1	448	<u>44.8</u>	주2) 0.1	448	<u>44.8</u>		
Total collective dose			<u>9,954.7</u>		AND AND A	<u>55.8</u>		

RESULT (1)

Result Data Regarding Expected and Actual Dose

A : Target dose of maintenance, repair without shielding.

C : Target dose of maintenance, repair with shielding.

THANK YOU

