### 2014 ISOE Asian ALARA Symposium

Decreasing costs and increasing efficiency by reusing Lead vests for reduction of waste materials

### 2014.9

### Dong-ki Yun Korea Hydro & Nuclear Power Co.

### 2014 ISOE Asian ALARA Symposium

### Table of contents

I. Purpose & Background **II**. Reusing of Lead vests **III**. Manufacture of shielding **IV.** Application of Shielding Materials V. Expected effect and Plans

## I. Purpose & Background

## Reduction of the waste materials by reusing the disused Lead vest

Disposal of the disused radiation protection supplies in the RCA

Reduction of costs & waste by reusing the obsolete materials Contribution to decreasing the low base dose emissions through the tailored Lead vest

# I. Purpose & Background

The need of shielding for small size pipes among the high radiation pipes in the RCB

- Hardship of shielding for HDSP\*
  - Complicated configuration & structure of the existing Lead blankets
  - Different sizes between the blanket and pipes
  - Inconvenient pass-way & Eyesore of the external appearances
- Dislodgment from the pipes after shielding

- The issue of integrity for the blankets HDSP : high dose rate & small sized pipes Requirements for the way of shielding & the reduction of the waste materials

- Reusing the radioactive waste
  - Decreasing the waste by optimizing the Lead plates in the vest which should have been disposed of
- Improvement of the shielding method
  - Manufacturing the materials to shield the HDSP with the appropriate shapes and sizes

# **II.** Reusing the Lead vests

### Status in Hanbit PP2

### Necklace Type Shoulder type General type







Thickness/Weight : 2.0mm/9kg Thickness/Weight : 2.0~1.5mm/8.1kg Thickness/Weight : 1.5~0.8mm/6.5kg

# **II.** Reusing the Lead vests

#### Current conditions

| Type<br>Quantity | Necklace Type | Shoulder type | General type |
|------------------|---------------|---------------|--------------|
| Total            | 25sheet       | 41sheet       | 95sheet      |
| Disposal         | 21sheet       | 15sheet       | N/A          |
| Lead plates      | 45ea/sheet    | 45ea/sheet    | N/A          |

#### Separated Lead plates

| Item          | Collective(ea) | Useable(ea) | Remark  |
|---------------|----------------|-------------|---------|
| Necklace Type | 945            | 853         | -       |
| Shoulder type | 675            | 597         | _       |
| Total         | 1,620          | 1,450       | Reusing |

Specification of the Lead plate(Size : 31×2.5×0.2 cm/Weight : 0.12kg)

### **III.** Manufacture of the Lead shielding

### Design of shielding

#### Structure of the shielding

- Consideration for sagging from the pipe and length of
- the line Steady structure

available for long term period

#### Material of the shielding

- Non-flammable & easily
  - decontaminated material
- Outer cover : tarpaulin
- Inner part : Polyester 65%

#### Manufacture of the shielding

- Grid patterned plate with the double stitch
- Within 2mm between inner sheath & plate
- Sealed Lead plates with the outer cover
- Edge of the Lead plate to be spherical

A AND A CONTRACT OF

### **III.** Manufacture of the Lead shielding

### Process of manufacturing

### **Separated Lead**



### Decontamination



#### Completed

#### **Extracted Lead**

### **III.** Manufacture of the Lead shielding



### **Existing Lead shielding**

#### **Improved Lead shielding**

- Size(cm) : 110 \* 40 - Weigh(kg) : 12.46 1 Size (cm) : 40 \* 35 Weigh (kg) : 4.2

② Size (cm) : 60 \* 35 Weigh (kg) : 6.2

③ Size (cm) : 80 \* 35 Weigh (kg) : 8.0

### Application of the shielding

### <u>S/G C/L $\rightarrow$ Small size pipe of RDT line (RCB 86ft)</u>



After



### Application of the shielding

### The HRL around the Cavity FAN (RCB 86ft)



After



### \* HRL: High Radiation Line

### Application of the shielding

### The HRL around the S/G 2 C/L Man-Way (RCB 100f



After



### Application of the shielding

### <u>RC LOOP 2A $\rightarrow$ The HRL around the PZR (RCB</u>



After



The omitted pipe with existing Lead blanket due to weight issues

### Application of the shielding

### The HRL of the Let-Down 441-201Q (SAB100ft)

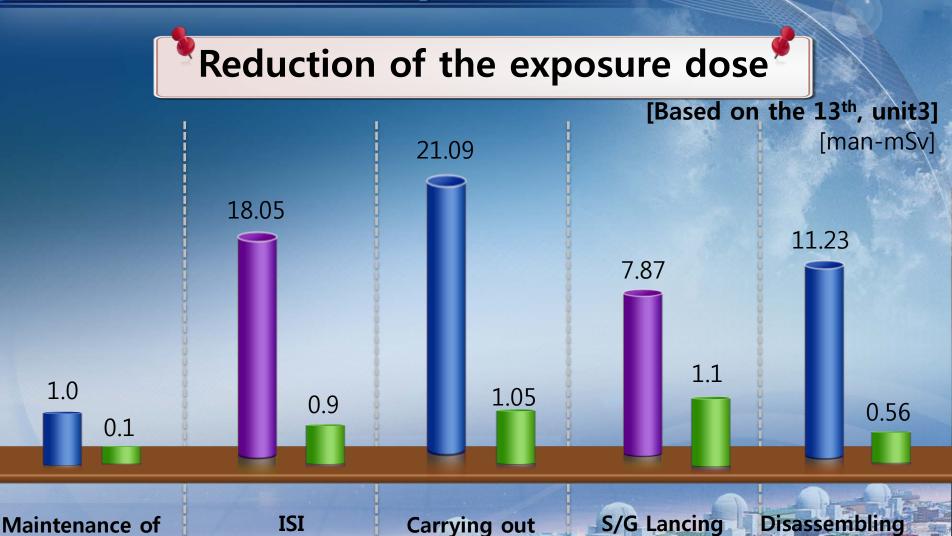


After



#### Improvement

• Taking less time than expected to shield these lines


• Solving the environmental conditions of the narrow work spaces

Increasing its shielding function by attaching securely

| Chielding area                             | Dose rate(mSv/h) |       | reduction     |         |
|--------------------------------------------|------------------|-------|---------------|---------|
| Shielding area                             | Before           | After | efficiency(%) |         |
| 1. RCB 86' S/G C/L $\rightarrow$ RDT Line  | 0.62             | 0.51  | 17.7↓         |         |
| 2. HRL around the Cavity FAN               | 0.81             | 0.65  | 19.6↓         |         |
| 3. HRL around the S/G 2 C/L                | 0.58             | 0.56  | 3.5↓          |         |
| 4. RC LOOP 2A $\rightarrow$ HRL by the PZR | 0.72             | 0.18  | 75↓           | Mar Mar |
| 5. HRL of the Let-Down 441-201Q            | 3.10             | 2.80  | 9.7↓          |         |

# V. Effects & plans

the Rx Cavity Fan



the S/G ECT

work of the valves

# V. Effects & plans

### Conclusion



# Reduction of the radioactive waste materials and the costs to process the drums

- Achievement of decreasing the waste by reusing the vests
- Reduced Capacity : about 1 drum



- Improvements for the efficiency of the shield and analysis of the HRL
- Boosting the external appearances by perfecting the shields



- Increasing the shield efficiency in comparison with existing Lead blankets solved the weight issues
- Enhancement of the way to shield the large size pipes
- -Need to try to manufacture the tailored shielding for the

complicated structures

# V. Effects & plans

### Plans

- Developing the shield superiority to enhance the efficiency of the existing shielding materials
  - Tungsten Shielding
    - High intensity and flexibility
    - Non-poisonous & superior shielding function than Iron or Lead
    - But more expensive(3times price of Lead)
- Sustainable improvements for the shielding methods for the large sized pipes



<u> Thank</u>

Korea hydro & nuclear power co., LTD. HANBIT NUCLEAR POWER SITE Tel : +82-61-357-2281 Cell : +82-10-2696-2282 E-mail : leony@khnp.co.kr