

ISOE 2012, Prague, 20. – 21.6.2012

New sorting monitors at NPP A1, Slovakia

by:

Ondrej Slávik - presenter, slavik@vuje.sk

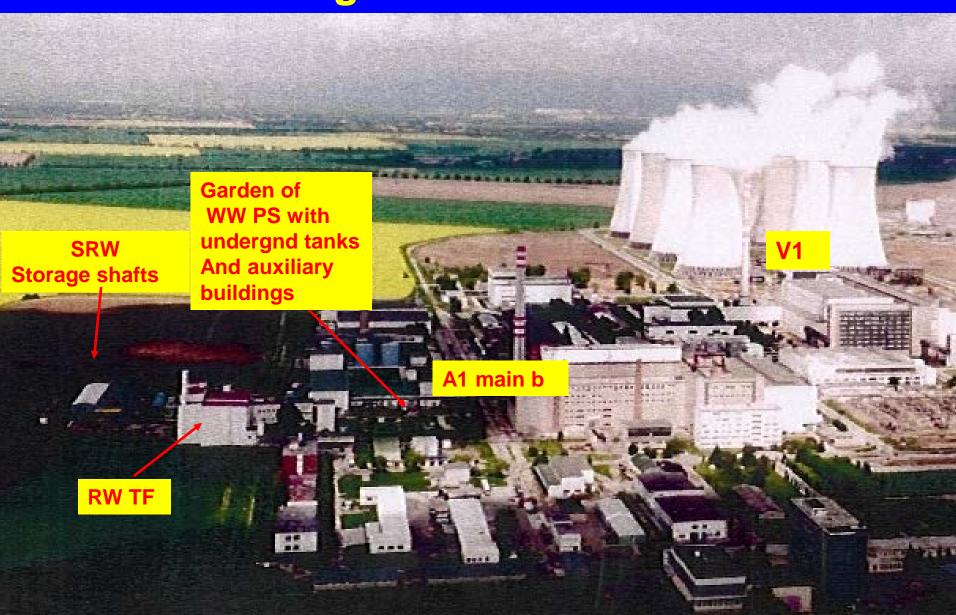
and A.Slaninka, M. Listjak, K. Kravarik,

VÚJE, Inc. Trnava, Dep. of Personal and Environml Dosimetry,

I. Pély - JAVYS, Inc. Bratislava, both Slovakia,

Content

- NPP A1 site, decommissioning status, moving of large volumes of contaminated soil
- 2. Operative loader shovel monitor for soil sorting
 - a.Concept
 - b.Design
 - c.Prototype
- 3. Conclusions

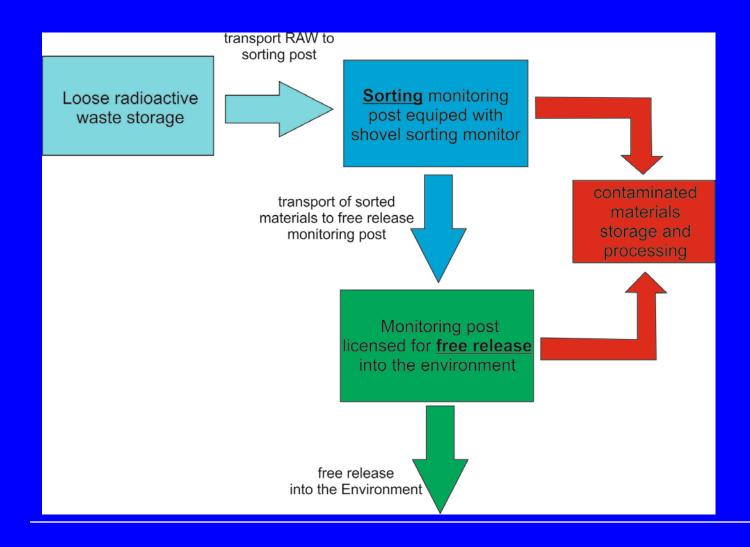


NPP A1 Present day status of D&D

- NPP A1 is under decommissioning more then 12 years
 - I.stage: 1999 2007
 - II. stage from 2009
- Specific radiological conditions due to an accident shutdown after partial core melting, in 1977
 - Cs-137 is dominant RN
 - HDRNs vector is known, cca in the most caases
 Sr/Cs =0.1, Pu/Cs = 0.01

Bohunice NPP complex –auxiliary buildings on left side

Removing of large volume of contaminated soils


Means sorting and transport of soil to manupilation place for VLLW and to free release post

It needs:

- Application of heavy techniques like excavator, trucks, etc.
- Establishment of manipulation place for excavated soil
- Sorting of soil to contaminated and potentially free releasable parts by suitable sorting monitor and so:
 - to reduce volume of soil to be monitored by costly free release techniques (belt or container monitor)
 - to minimize volume of VLL CS

CS stream diagram at sorting and free release monitoring process

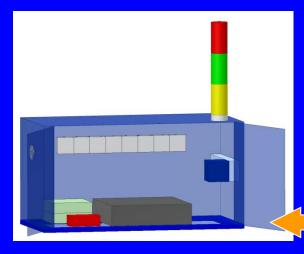
Operative CS sorting monitor

It should have

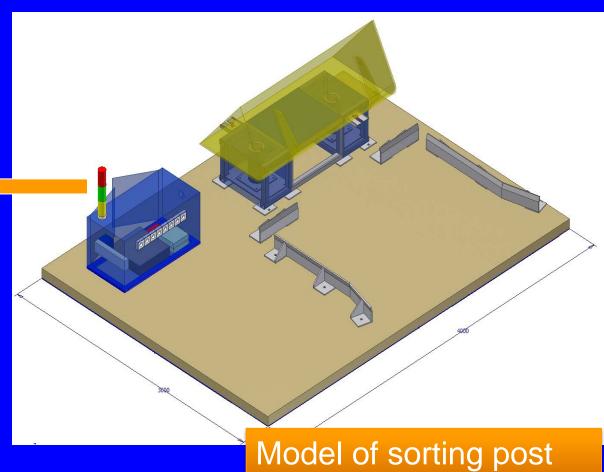
- short measurement time but
- Sufficiently low MDA, e.g 100 Bq/kg (limit 300 Bq/kg)
- low manipulation time for measurement!!,
- Light, wireless signalling of measured data at the sorting post,
 e.g. > 500 or < 500 Bq/kg (FR limit 300 Bq/kg of pure ¹³⁷Cs)

Shovel of an UNC loader

- was selected as part of sorting monitor (far counting geometry)
- slab source geometry cca 30 cm thick was used


for MCNP peak eff. calculation

Shovel width x depth: 180 x 75 cm, V = cca 400 dm³ Supposed density =1.2 g.cm⁻³ No weighting

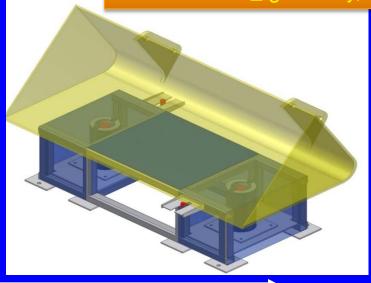

Concept of operative CS sorting shovel monitor

Limited accuracy of measurement, so sorting only, but with

high capacity: 10 – 50 t per working shift

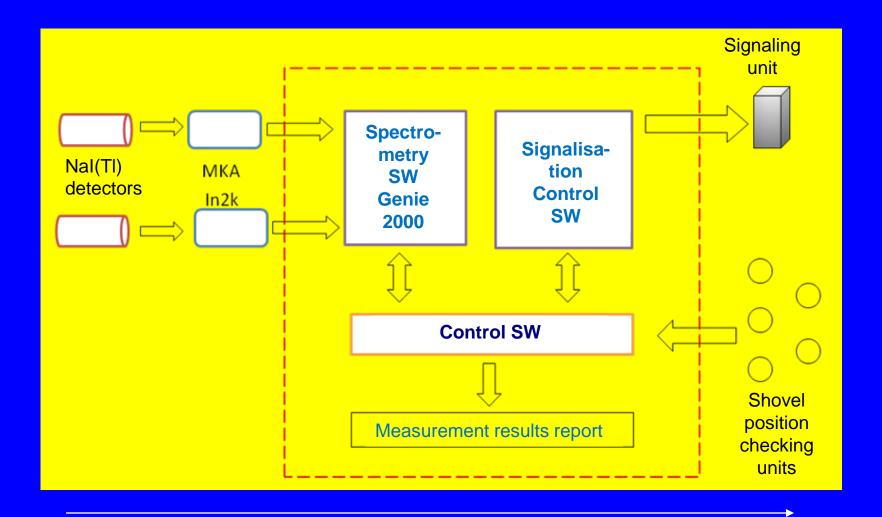
Loader Shovel sorting monitoring

system - prototype

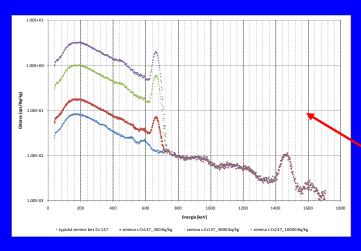

Includes own designed components:

- protective casing with
 - measurement table for shovel fixation checking position sensors
 - 2 shielding towers (+ standard Nal)
- components for loader navigation to fixed measurement place
- control SW for monitoring and signaling
- color lights box for indication of monitoring data, and monitor statuses

and a case with standard gama spectrometry electronics (MCA, DSP, PC, GSP SW – Canberra Packard)

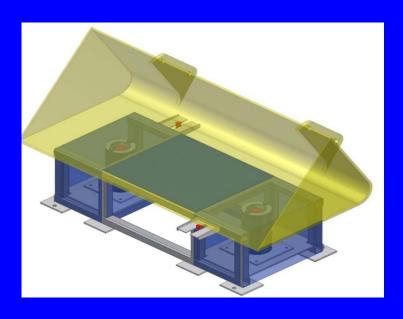


2xNal count._ geometry,



Control diagram of the shovel monitor

Details of sorting shovel monitor


Lightning signal of sorting result

Characteristics of the shovel monitor

1800 x 750 mm (width x depth), V=cca 400 dm³

MDA = 200 Bq/kg 137 Cs (NaI(TI) 2" x 2"), = 100 Bq/kg (NaI(TI) 3" x 3")

- Bacground subtraction before measurement evaluation
- No weighing at measurement
 Supposed soil density =1.2 g.cm⁻³
- Estimated sensitivity:
 0.009 (2"), 0.027 (3") s⁻¹/(Bq/kg)
 by MCNP simulation:
- Sorting result light indication
- Uncertainty high, typical cca 30%

Conclusions

- Acceptable deviations were found with laboratory measurements using samples from the shovel
- Monitor for loader shovel is extensively explored within CS handling at NPP A1 (Bohunice, Slovakia)
- Approximately 50% of CS was assorted as free releasable soil
- The most of assorted soil has been free released into the environment (metrologically certified FR monitors)

Thanks for attention

Free release licences at the site

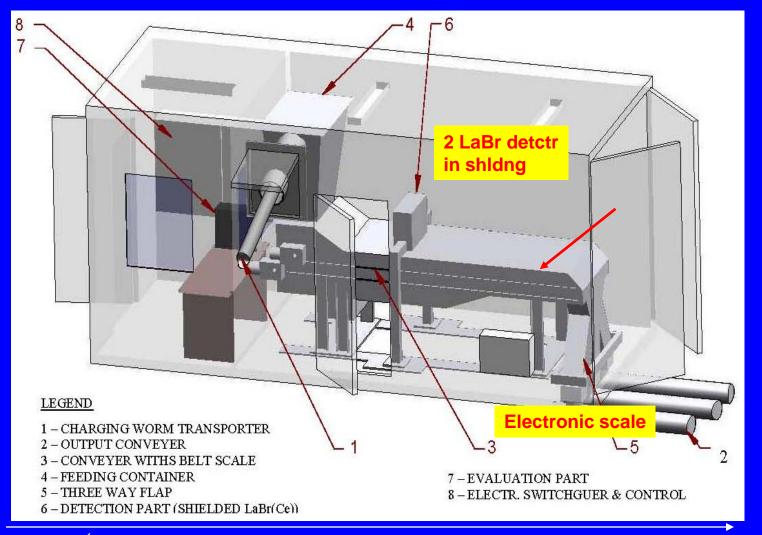
- 200 L WM2001 drum monitor since 2004, has very limited capacity, 2 t/shift
- Soil Sorting Conveyor Monitor part of FR post since 2010, 10 t/shift

- 600 L Container Monitor part of FR post for CS and CCR under licencing (Pub. Health auth-y), 10 t / shift
- Loader Shovel operative monitor part of CS handling and characteris. post – is under testing, 50 t/ shift, for sorting only

Central free release post with WM 2001 3xHpGe drum monitor

Central Free release post with handy cran manipulation (very slow)

limited capacity!! – cca 2.5t / shift


T=15 min,
MDA =5 Bq/kg

Belt monitoring system for FR and Vuice sorting of contaminated soil

- 2 GSP LaBr detectors above moving belt (reported at ICEM 2009)
- control SW and 3 way sorting flaps
- FR and sorting of 30 kg batches above Release Limit, capacity = 10 t/shift

Scheme of the belt conveyer monitoring Vuje and sorting sytem

FR belt monitoring system for FR and sorting of contaminated soil

is based on

- feeding mechanics and 60 cm belt conveyer
- 2 GSP LaBr detectors above moving belt (Canberra HW, SW)
- control SW and 3 way sorting flaps

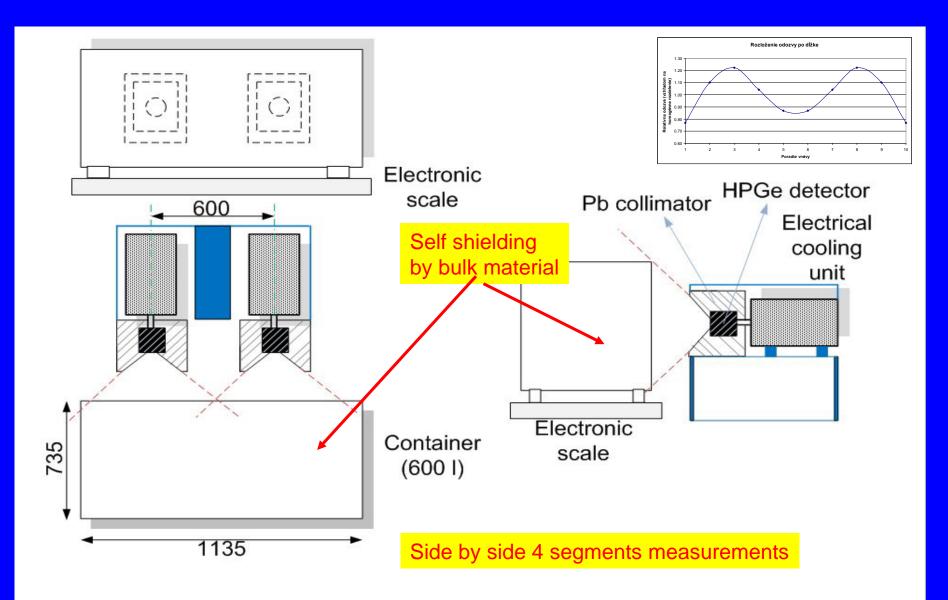
It has sorting capability as well (30 kg portions > 300 Bq/kg)

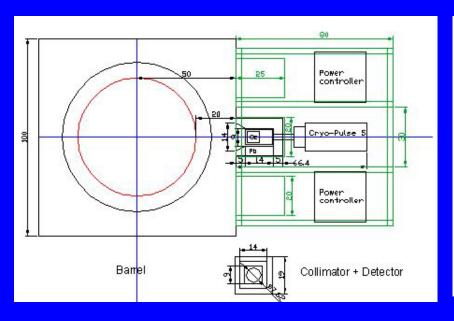
- !! works with dried soil, only
- Monitoring capacity, dried soil: cca 10 t / shift,

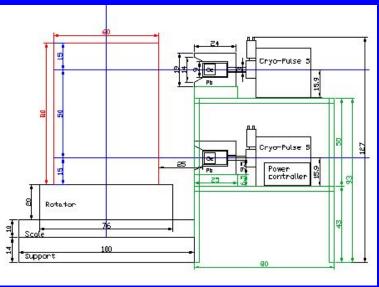
New 600L container monitor

Was recently designed and commissioned at VUJE

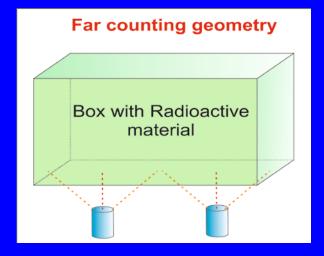
it increases the free release monitoring capacity


- for contaminated bulk material (soil, concrete)
- Use lift truck for manipulation with
 - 600 L containers / 200 l drums
- Is reconfigurable (container/drum) horizontal and vertical configuration
- Productivity, container: 10 t /shift (has doschargeable bottom – lower manip time)


Rectangular
Pb colimator shielding


600 I container monitor – (lift truck manipulation)

200 L Drum monitor – scheme of vertical use count._ geometry (lift truck manipulation with drums)


Choose of counting geometry for operative large capacity on site monitor

vůje

Feasibility of implementation of various counting geometry with selective Nal det._ showed:

- close geometry with highest eff was found problematic due to:
 - too complex machine structure, needed
 - high manipulation time with bulk material (fill in, moveout)
 - need of multi detector syst. (short mean free path for cs-137 in soil)
- loader shovel monit._ in far geometry
 showed to be as the most feasable next

Evaluation algorithm for signaling lighting tower

Contaminated side: both NAI results > 500 Bq/kg

Free releasable side (Conveyor or container monitor):

- Average soil cont <500 Bq/kg
- One of shovel half < 500 Bq/kg (one Nal data)
- Goal is
- 1. to avoid costly free release measurements
- 2. to leave as much as is possible at free release side -
- sorting of 30 kg batches by the conveyor monitor

Main characteristics of the Bohunice NPP-A1 which is now under decommissioning

Reactor: pilot, channel type HWGCR (HW Gas (CO₂) colled)

Spent fuel: nat U (with Mg-Be cladding)

Gross power output: 143 MWe

• Comissioned: _____1972

Operation period: 5 year

Shutdown: 1977 - fuel integrity accident.

Decommisioning -I phase 1999 -2006

 The shovel monitor explores far counting geometry and SW control of shovel fixation and gammaspecrometry measurements at soil monitoring,