Radiation Protection in the design of the Flamanville 3 EPR

<u>Noëlle EGLIZAUD</u> – Stéphane MOREAU – Yannick BENETEAU

EDF / CNEN

Contents

1. Introduction

2. General layout requirements

- 1. Radiation protection zoning
- 2. Specific requirements

3. ALARA at the design stage

- 1. Approach and methodology
- 2. Reference dose
- 3. Initial dose
- 4. Optimised dose

4. Cleanliness/waste consideration

1. Introduction

The <u>designers</u>:

consider the radiation protection at the Safety level,

place the EPR plant in a step of progress compared to the best French nuclear plants

- Layout and civil work requirements regarding Radiation Protection
- Use of the good performances of existing plants and of operational feedback
- Dose optimisation for the most exposed activities and workers

allow the operator to work in the Reactor Building during power operation

In order to improve the plant availability while complying scrupulously with the radiation protection rules

2. General layout requirements: zoning

- French Regulatory exposure limits:
 - 20 mSv over 12 consecutive months for A classified workers,
 - 6 mSv over 12 consecutive months for B classified workers
- French Regulatory radiation protection zoning

2. General layout requirements

- Encasement of active equipment,
- Good accessibility to equipment requiring regular maintenance,
- Shielding mazes or shielding doors shall be foreseen to access to active equipment, the corresponding valves are located near the room entrance

- Sufficient space is foreseen for:
 - A low dose area to prepare and monitor the activities,
 - Maintenance of the equipment in the buildings,

2. General layout requirements: dose limits

Hot lab in Operation Building: 7.5 μSv/hr

Sampling laboratories in Nuclear Auxiliary Building and frequent passageways (corridors, staircases): 10 µSv/hr

25 μSv/hr limit for:

- Access to working areas, safety exits, control valves rooms
- Edge of the spent fuel pit in the Fuel Building
- Reactor building at shutdown: edge of the refuelling cavity

Reactor building at power, accessible area

- Neutron dose rate: 2.5 µSv/hr,
- Effective dose rate: 25 µSv/hr

3. ALARA at the design stage (1/6): approach

3. ALARA at the design stage (2/6): approach

High-dose activities selection:

- Thermal insulation removal and reinstallation
- Site logistics
- RCP, RCV, RIS/RRA [RCS, CVCS, SIS/RHRS] valves
- Reactor pressure vessel opening/closing
- Fuel evacuation
- SG preparation and tests
- Waste conditioning

High exposed workers

High collective dosimetry

High dose rate activity

Radiological cleanliness

50 % of the collective dose

3. ALARA at the design stage (3/6): reference dose

The reference dose is based on:

- The operational feedback,
- Dose statistics of the best French nuclear plants in operation

Recent plants: P'4 (newest 1300 MWe) and N4 (1450 MWe)

- 18-month cycle
- Averaged over 10 years
- Outages cycle:
 - 3 Normal Refuelling Outages (NRO)
 - 2 Refuelling Only Outages (ROO)
 - 1 10-year outage

→ 0.44 Man.mSv/year/unit

3. ALARA at the design stage (4/6): initial dose

Source term

- Significant reduction of stellitesTM amount in valves and RPV internals
- Optimisation of the main primary chemistry
 - → global profit of 15% in the dose rate

Dose rates reduction

- Pressurizer spray lines separated from pressure relief valves by a concrete shielding
- Reduction of «hot point traps»

Exposed time limitation

- Fast mounting thermal insulation
- Optimisation of steam generator channel head
- Use of valves with modular maintenance

→ 0.36 Man.mSv/year/unit

3. ALARA at the design stage (5/6): optimised dose

Thermal insulation removal and reinstallation

- Thermal insulation and pipe identification
- Operation with water in the pipes

Site Logistics

- Fast mounting/dismounting scaffolding
- Fix platform around SG manhole, handhole and eyehole

RCP, RCV, RIS/RRA Valves

- Limitation of StelliteTM amount
- Improvement of valves tightness: double leak tightness barrier

Reactor pressure vessel opening/closing

- Core internals handling under water
- Dedicated zone for the vessel header storage

3. ALARA at the design stage (6/6): optimised dose

SG preparation and tests

- Fast mounting nozzle dams
- Increase of the primary/secondary manholes diameters

Waste conditioning

- Waste selection near their production location
- Possibility to check the waste conformity in the NAB

Fuel evacuation

Help for the fuel trolley positioning

+ Access in the Reactor Building during power operation

4. Cleanliness/waste consideration

Basis concept: controlled zone ≠ contaminated zone

Goals

- To get a radiological cleanliness at the best international operators level
- To adapt the protection to the contamination risk identified where the action takes place and limit the contamination at its source
- To facilitate the access and working conditions in the controlled zone
- Be a mean of progress in the plant cleanliness: the zoning has to be maintained

At the design stage,

- It required a general contamination view:
 - Identification of the nuclear / conventional areas (N vs K) → Regulatory
 - Evaluation of the contamination level in the nuclear areas (Np, N1, N2)

It led to requirements regarding:

- Ventilation routing
- Contamination containment
- Operators access

The Cleanliness/waste zoning is a tool for the plant design. The operator can apply it or not.

Cleanliness/waste zoning

Methodology:

1. Classification of each room based on: the systems installed, the actions to be performed, the waste produced...

2. Evaluation of the overall building level to have a consistent zoning with the operation: routing from the less contaminated to the most

3. Implementation of contamination barriers

ISOE Symposium – Cambridge, 17th of November 2010

4. Cleanliness/waste consideration

All the EPR rooms have a cleanliness/waste classification

4. Cleanliness/waste consideration

Reactor in operation

- « in blue » access to K and Np zones, including the RB accessible area
- Over clothes put at the N1 and N2 contamination barriers

Reactor at shutdown

- The reactor building is N1 or N2
- The over clothes for activities in the RB are taken in the Access tower and completed at the RB entrance
- The over clothes are left at the RB exit

The « in-blue » access is reversible:

- « cold » changing rooms kept in the Operation Building
- « hot » changing rooms operate (level -2)
- all the devices and systems are foreseen, the ventilation is designed as for « in-white » access, decontamination showers are implemented

5. Conclusion

The Flamanville 3 EPR designers considered:

- the radiation protection Regulatory requirements
- specific radiation protection requirements
- the ALARA approach
- the contamination containment and limitation

to place the EPR into an evolutionary approach

FA3, general view

FA3: Reactor Building

FA3: pumping station

Radiation Protection in the design of the Flamanville 3 EPR

Thanks for your attention

