GRS

Radiological data from German Nuclear Power Plants During the Transition From Operation to Decommissioning – the Need for an Improved Data Acquisition Structure for Utilities under Decommissioning

ALARA Symposium Cambridge, 17th to 19th November 2010

Jörg Kaulard, Claudia Schmidt, <u>Erik Strub</u> Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Germany

Outline

- Introduction Worldwide trends in occupational exposure
- Occupational Exposure in German Nuclear Power Plants under Decommissioning
- The Occupational Exposure of German NPPs during the Transition from Operation to Decommissioning
- A Closer Look on Job, Task and Sub-Task Doses Understanding the Origins of the Occupational Exposure

Conclusion and Outlook

Introduction - Occupational Exposure in Nuclear Power Plants Worldwide

 NPPs in operation - Three years rolling average annual collective dose per NPP in person.Sv/a (from the ISOE data base – representing 401 NPPs)

Introduction - Occupational Exposure in Nuclear Power Plants Worldwide

 NPPs under decommissioning (incl. shut down) - Average annual collective effective dose per NPP (from the ISOE data base – representing 70 NPPs)

Strub et al., ALARA Symprosium Cambridge 17th to 19th November 2010

Occupational Exposure in German Nuclear Power Plants under Decommissioning (1/2)

NPPs under decommissioning – Total annual collective effective dose of monitored personnel

Occupational Exposure in German Nuclear Power Plants under Decommissioning (2/2)

 NPPs under decommissioning – Average annual individual effective dose of monitored personnel

Occupational Exposure under Decommissioning

- average annual doses are much lower than in case of NPPs in operation
- But: no simple trends can be recognized
 - recorded doses strongly depend on the decommissioning work and the related radiological conditions
 - work activities change from year to year, following the overall work planning and decommissioning strategy for the NPP
 - the type, inventory and operational history of the NPP influence the radiological conditions
- Improvements e.g. due to experience feedback take place, but they can only be identified on the level of an *individual NPP* and only if the radiological conditions and the performed works are *analysed in detail*

Transition from Operation to Decommissioning (an arbitrary German NPP)

Transition from Operation to Decommissioning (several German decommissioning projects)

Strub et al., ALARA Symprosium Cambridge 17th to 19th November 2010

Transition from Operation to Decommissioning

- decommissioning related average annual individual effective dose is 10% to 20% with respect to operation (depending on NPP / performed works)
- dose reductions begin some years before the end of operation (if known before) due to e.g.
 - reduced workload during the last outages
 - less improvement activities will be performed
- during decommissioning, dose entities are changing from year to year
 - depending on the performed work might "increase" years after beginning of decommissioning
 - variations can not be interpreted without detailed knowledge
- detailed analysis (job/task/subtask) is already implemented in ISOE, but...

A Closer Look on Job, Task and Sub-Task Doses (Operation)

GRS

A Closer Look on Job, Task and Sub-Task Doses (Decommissioning)

Conclusions

- dose under decommissioning may vary strongly from year to year
- in the ISOE, reported data on jobs and task do not necessarily sum up to the annual collective effective dose (difficult to retrieve, limited data structure, ...)
 - operational data can nevertheless be easier evaluated (similar or often performed works) than decommissioning data (changing or once performed works)
 - under decommissioning more specifications are needed than during operation (e.g. the job "decontamination" needs specification of decontaminated component, radiological surrounding, operational history, ...)

Outlook

- An improved ISOE data structure for decommissioning must
 - be detailed enough to reflect the complexity of decommissioning works
 - be easily structured enough to encourage the participants of ISOE to provide data as complete as possible
 - consider specific properties of decommissioning works
- ISOE goals:
 - hints on "best practice"
 - initiation of peer-by-peer discussion on radiation protection measures
- Challenge: balancing
 - the requirements on a data collection necessary to reach these goals
 - the practical limitations of data collection
- \rightarrow ISOE WGDA task group

Thank you for your attention

no matter who you are ...

