

Steam Generator Replacement of the Belgian Doel 1 unit: follow-up and on site dosimetry

B. Walschaerts*, J. Defloor**, R. Wyckmans**

* Radwaste management – Decommissioning – Radiation protection, Tractebel Engineering (GDF-SUEZ) -Brussels – Belgium

CHOOSE EXPERTS, FIND PARTNERS

** Electrabel (GDF-SUEZ) – Doel NPP - Belgium

TABLE OF CONTENT

- Introduction
- Implementation of ALARA
- ALARA preparation for the Steam Generator Replacement (SGR)
- ALARA follow-up
- Recommendations of the working group
- Dosimetric follow-up
- Return of experience
- Doel 1 SGR compared with others
- Conclusion

INTRODUCTION

- Doel 1 \rightarrow 7th SGR project in Belgium
- Doel 1 & 2 = twin reactor
 - Some circuits shared
 - But primary circuits separated \rightarrow chemistry and deposits are different

INTRODUCTION

- SGR Doel 2: 2004
- Doel 1:
 - SG's in operation for 35 years
 - Possible extended life time

SGR project + power upgrade of 10%

INTRODUCTION

- Problem: Doel 1 built in 1975
 - SGR was not considered in the design of the plant
 - The doors of the reactor building too little
 - Handling inside the reactor building was not considered

Lift the steam generators out of their cells through the ceiling of the reactor building !

INTRODUCTION

- This solution demands special ALARA care:
 - Shutdown of the reactor
 - Emptying the core
 - Temporary closure of the reactor building
 - Reactor building always in under pressure

IMPLEMENTATION OF ALARA

ALARA working group

- People from EBL and TE
- specialised in radiation protection and implementation of ALARA principle

• 2 tasks:

- 1) Pre-study phase:
 - Actual dose rates during outage
 - Possibilities of shielding materials
 - Defining objectives

2) SGR outage:

- Regular verification of the radiological status
- Control of the biological protections
- Daily control of the collective and individual doses
 and comparison with the estimates
 - Detect anomalies
 - Corrective actions

IMPLEMENTATION OF ALARA

• Long-time based efforts

- Good maintenance
- Precautions in the field of radiation protection
- Reduce contamination
 - The primary circuit
 - Atmospheric contaminations
 - Radioactive waste
- Site limit of 10 mSv during 52 sliding weeks for EBL personnel
- The use of local zones is strong dosimetric follow-up

IMPLEMENTATION OF ALARA

• Definition of the objectives

- 1) No work accident;
- 2) No nuclear incident;
- 3) No radioactive contamination incident;
- 4) SGR radiation dose lower than the radiation dose of the SGR of Doel 2 (<195 man.mSv)

ALARA PREPARATION FOR THE SGR

- Pre-study: create a simple and easy overview
 - Dosimetric phases
 - Work places
 - Task numbers for every activity
 - Measurement points
 - Wipe tests
 - Dose reduction coefficients

ALARA PREPARATION FOR THE SGR

• Results

- Not always possible to measure all the dose rates during the measuring campaigns
 - QAD-CGGP software → missing dose rates were calculated
 - Validation by the measured values
- Doel 1 30% higher doses compared to Doel 2
 - Biological shielding : 110 tons of Lead shielding
 - Keeping water chambers filled up as long as possible

ALARA PREPARATION FOR THE SGR

ALARA PREPARATION FOR THE SGR

- Insulation problem : possible presence of asbestos fibres
 - Asbestos works
 - Never done before in Belgian unit
 - This specific job demands more work, more people and more time
 - Negative influence on the dose objective

Calculated total dose objective: 375 man.mSv

ALARA PREPARATION FOR THE SGR

ALARA PREPARATION FOR THE SGR

• With asbestos works

Without asbestos works – normal insulation works

ALARA FOLLOW-UP

• On site follow-up

- TE ALARA team on site (2 3 members)
 - Direct link with EBL radiation protection team
 - Follow-up of the dose rates and dosimetric conditions on the work floor
 - Verification of the biological protections
 - Daily control of the personal and collective doses → adaptation of the estimates
 - Verification of the recommendations were applied by the contractors
- ALARA procedure

ALARA FOLLOW-UP

• Example:

- Before starting to lift:
 - Control of the dose rates at certain spots
 - Last wipe test to see if there is no removal contaminations
- If the results were OK
 - Final sign for lifting was given

ALARA FOLLOW-UP

- Recommendations by the working group
 - Optimisation of the chemistry of the primary circuit during the shutdown sequence of the plant
 - Cobalt peak scheduled
 - Optimisation of the maintenance of the primary and secondary circuit
 - Specific lead shielding
 - A specific daily ALARA follow-up to prevent situations with high doses and to assure a quick and adequate intervention if needed

DOSIMETRIC FOLLOW-UP

DOSIMETRIC FOLLOW-UP

- Good asbestos results
 - Collective dose = 40,44 man.mSv / Estimate = 116 man.mSv
 - Asbestos fibres were found in good conditions
 - Reduced cleaning time
- Delay due to the weather
 - Worst weather conditions in the last 10 year
 - Speed of the wind excited 10 m/s
 - Lifting was not possible → to many risks
 - Negative influence on the dose → open RGB and primary circuit → daily control had to be carried out

RETURN OF EXPERIENCE

- The adaptation of the configurations of the steam generators regarding the planning lead to lower the doses. The steam generators stayed as long as possible filled up with water
- The steam generator opening was delayed until all preparation works were done
- Visual control by means of local cameras by radiation protection and safety team
- The use of lead walls instead of lead shielding in contact
- Decontamination of the primary circuit by abrasive sponges (very effective and not dose consuming)

DOEL 1 SGR COMPARED TO OTHERS

DOEL 1 SGR COMPARED TO OTHERS

INTERNATIONAL RESULTS

Steam generator replacements - Exposure (man.Sv)

CONCLUSIONS

- Over the years
 - More experience
 - Better dosimetric results
 - Shorter outages
 - But Doel 1 still higher then Doel 2
 - Asbestos works
 - 30% higher dose rates and on different radioactive deposits