Using Weibull Distribution Analysis to Evaluate ALARA Performance

E.L. Frome, J.P. Watkins, and D.A. Hagemeyer

> October 13-15, 2009 IAEA HQ, Vienna, Austria

Introduction – Who We Are

- Janice Watkins and Derek Hagemeyer of Oak Ridge Associated Universities (ORAU)
- Ed Frome, Consulting Scientist for Oak Ridge Institute for Science and Education (ORISE)
- Project work through ORISE
- Under contract to the U.S. Department of Energy and the U.S. Nuclear Regulatory Commission
- ORAU maintains the occupational radiation exposure databases for DOE and NRC.

Measuring ALARA

- ALARA is a fundamental philosophy of radiation protection codified in NRC and DOE regulations
- ALARA requires a *balance* between collective and individual dose optimization
- Current performance indicators give valuable but incomplete information
 - Collective dose,
 - Number of workers with measurable dose,
 - Average measurable dose,
 - Three-year average dose per reactor
- These are based on collective data and do not consider the distribution of dose to individuals

Our Goal

- To develop objective, data-driven statistically justifiable ALARA performance indicators
- Applicable to a variety of facility types
- In combination with existing parameters, provides a more balanced measure of radiation protection performance based on the way the dose is distributed among the exposed workforce

Research Objectives

Objective 1

Evaluate utility of Weibull distribution for assessing ALARA application to radiation exposed workers

Objective 2

Derive ALARA performance indicators based on Weibull distribution parameters

Objective 3

Design graphics that illustrate ALARA performance indicators and properties of site dose distributions

Weibull Distribution Analysis

Weibull

Flexible statistical distribution for describing positive data, especially when frequent lower values and rare high values

Proportion of doses > x
 S(X) = 1 - F(X) = exp(-[x/β]^α), α>0 (shape), β>0 (scale)

Definition of x Each worker's annual TEDE – MIT, where MIT fixed at 0.1 mSv

 Maximum likelihood Statistical method to select the shape and scale parameters for the particular Weibull that best matches a site's doses

Weibull Density Function for Scale Parameter of 0.5

OAK RIDGE INSTITUTE FOR SCIENCE AND EDUCATION

Weibull Analysis Approach

- Weibull model fits to dose distributions
 Generally good since density function is asymptotic to y-axis when shape parameter < 1
- Performance indicators
 Generated from Weibull parameters estimates for the site
- R software functions

Written to calculate ML parameter estimates and performance indicators and to create Weibull plots

ALARA Performance Indicators

- Multiple ALARA indicators recommended
 - Shape parameter α
 - Slope of Weibull probability plot regression line (negative)
 - Fitted 99th percentile with confidence interval -- or
 - Percent exceedance with confidence interval
- Weibull probability plots
 - Provide visual evidence of ALARA effectiveness

Details of Weibull Probability Plot

- Points (In x, -In(-In x))
- Regression line: solid black line
- Labels on axes adjusted
 - Horizontal: TEDE before MIT subtracted
 - Vertical: % exceedance for values of interest
- Fitted 99th %tile:
 - Intersection of blue horizontal dashed line with regression line
 - 95% CL indicated by horizontal red segment

Details of Weibull Probability Plot (cont.)

- Percent exceedance: Shown for 2.5 mSv
 - Intersection of green horizontal dot-dashed line with regression line
 - 95% CI indicated by vertical green segment
- Reference line for comparisons
 - Slanted green dashed line with slope = 1
 - Indicates boundary for 99% of doses being < 10 mSv

Annotated Probability Plot

ORRISE SCIENCE AND EDUCATION

All DOE Sites - 1999 and 2008

ORRISCIENCE AND EDUCATION

All NRC Reactors - 1999 and 2008

ORRISE SCIENCE AND EDUCATION

Comparison of NRC Licensees

OR IS E

Using Collective Dose and Weibull Performance Indicators to evaluate ALARA among Sites

ORISE SE

Conclusions

- Objective performance indicators based on Weibull distribution analysis provide enhanced information for evaluating ALARA at a site
- Graphs demonstrate this approach is useful for comparing ALARA over time or among sites
- Analysis of dose distributions from a variety of sites establish the wide applicability of the Weibull approach
- Software is being developed to implement these methods

Derek A. Hagemeyer, ORAU 865-241-3615 Derek.Hagemeyer@ orise.orau.gov

