



# EPRI Radiation Management Program: Support of RP2020 Program

**ISOE International ALARA Symposium** October 14th, 2009

**Dennis Hussey, Ph.D.** Sr. Project Manager

Radiation Management, Fuel Reliability, -Chemistry

#### **Overview**

#### **EPRI Support of RP2020**

#### **Source Term Reduction**

#### **Boiling Water Reactor Highlights**

Dose Rate Trends

#### **Pressurized Water Reactor Highlights**

Dose Rate Trends

**Radiation Protection Technology Demonstrations** 



### **RP2020 Mission**

Reshape radiological protection at nuclear power plants to achieve significant improvements in safety performance and cost-effectiveness.



#### Partners in Creating RP 2020

Radiation Protection Managers

**Chief Nuclear Officers** 



NEI = Policy INPO = Performance EPRI = Research



## **RP2020 Strategies and EPRI Status**

- Reduce radiation fields—EPRI
- Improve technologies utilization—EPRI
- Standardize RP criteria & practices—ALL
- Redefine RP roles/responsibilities— NEI/INPO/EPRI
- Influence RP regulations—NEI

## **Source Term Reduction Program Strategy**

EPRI Source Term Reduction Program focuses on four areas



## **Source Term Activation and Transport**



© 2009 Electric Power Research Institute, Inc. All rights reserved.

## Source Term Magnitude By Location PWR Example

| Location                                                 | Surface Loading<br>(uCi/cm <sup>2</sup> ) | Total Curies                                 |
|----------------------------------------------------------|-------------------------------------------|----------------------------------------------|
| Fuel                                                     | Co-58 = 250<br>Co-60 = 12                 | ~10,000-15,000 Ci Co-58<br>~500-750 Ci Co-60 |
| Removal During<br>Shutdown                               | N/A                                       | 500-5000 Ci Co-58<br>5-50 Ci Co-60           |
| Ex-core Surfaces<br>(including piping,<br>channel heads) | Co-58 = 8<br>Co-60 = 3                    | ~150-200 Ci Co-58<br>~ 70 Ci Co-60           |



## **BWR Source Term Reduction Project**

- BWR Source Term Reduction Estimating Cobalt Transport to the Reactor (Report #1018371)
- Goals of Project
  - Identify how plants measure cobalt
  - Target cobalt sources
  - Benchmark cobalt transport to reactor
  - Quantify removal and releases during shutdown and normal operations



## **BRAC Measurement Points**





## BRAC Radiation Fields (June 2008) Mitigation Strategy





## **BWR Conclusions**

- Low radiation fields can be obtained regardless of mitigation strategy
  - Proper sequence of decontamination, mitigation strategy and zinc required



## **PWR Source Term Reduction** *Technology Evaluations—Report 1016767*

- Key Results
  - Zinc continues to show significant radiation benefits
  - pH effects noticed when comparing before and after PWR Primary Guidelines
    - Ringhals, San Onofre report benefits of elevated pH
    - Comanche Peak 1 and 2 do not show clear benefits
  - Long term benefits of electropolishing are noted



# **Westinghouse SRMP Monitoring Points**



E

### **SRMP: PWR Center Channel Head Hot Leg** *Most Recent Available Cycle*



Plant ID



## **SRMP: PWR Loop Piping Cold Leg** *Most Recent Available Cycle*



# **Zinc Injection Impact on Radiation Fields**

- Several examples of positive impact of zinc
- Diablo Canyon 1 is most striking
  - Cobalt-60 decay curve is followed
  - Implies no additional activity deposition



For Diablo Canyon 1, since zinc injection, Cobalt-60 surface loading follows Co-60 decay curve at Diablo Canyon 1



#### Impacts of PWR Primary Chemistry Guidelines on Dose Rates



# **PWR Summary/Conclusions**

- Zinc appears to be the strongest option to reduce ex-core dose rates
- pH has an impact, but mechanism is under investigation



## **RP 2020 Technologies**

- Project has strategic and tactical parallel paths
  - Task Dose Benchmarking
  - Technology Identification and Demonstrations



# **RP Technology Implementation Roadmap**



## Technology Implementation Example Identify the Task/Individuals

- Reactor Assembly/ Disassembly is a high dose task
  - High dose rates
  - Many tasks
    - stud tensioners
    - CRD work
  - Shielding difficulties
- Preliminary results show high effective dose rates
  - cumulative dose/work hours



Average Dose for 5 BWRs (mSv)



### **Technology Implementation Example** Select Candidate Technology

- Real Time Location Sensors to assess efficiency
  - Reports 3-D position to 3 cm resolution
  - Use it to
    - Determine work flow path
    - Identify unnecessary personnel exposure
    - Identify possible parallel tasks





## **RP 2020 Technology Implementation** *Part II: Technology Demonstrations*

- Utilities are already trying new technologies
- Technology list is in development
- For viable candidates, goal is to co-fund demonstration

#### **Remote Technologies**

Remote welding and sanding

Remote monitoring (fiber penetration)

Wireless remote monitoring

Bluetooth communications technology

#### **Decontamination**

Local system decontaminations

**Control Rod Drive Flushing Tool** 

Cavity decontamination with peroxide

Dry vacuuming of vaults

#### Shielding

Shielding mats for refuel bridge

Permanent shielding on aux building systems

Moldable shielding

#### **Novel Technologies**

RadBall ™

Valve seat replacements

Replacement fiber insulation with reflective insulation

**Location Tracking** 



# **Technology Conclusions**

- EPRI is actively seeking new technology demonstrations
  - International collaboration is welcome
  - Please contact Dennis Hussey, <u>dhussey@epri.com</u>
- Check <u>www.epri.com</u> for Radiation Management Program
  - Many publicly available reports

