

Alloy 600 Inspection and Mitigation Dose Performance: 2008 Update

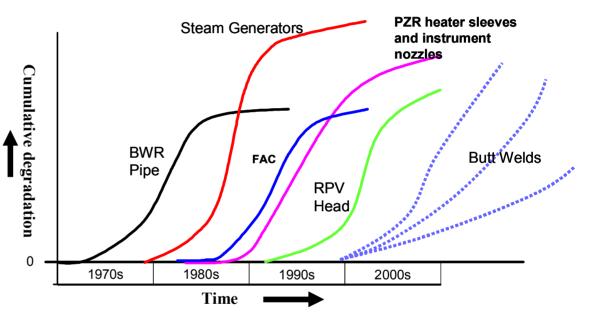
ISOE North American ALARA Symposium/EPRI Radiation Protection Conference

January 12th-14th

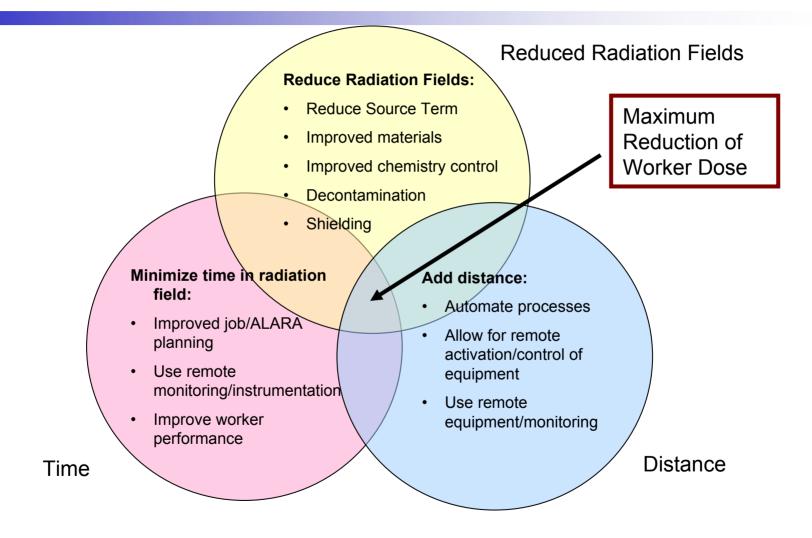
Karen Kim

Sr. Project Engineer

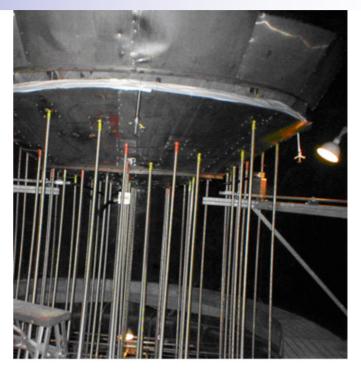
On Behalf of Dennis Hussey


Overview

- Alloy 600 history
- Current inspection challenges
 - Inspection techniques
 - Mitigation techniques
- Local source term reduction methods
- Benchmarking
- Conclusions

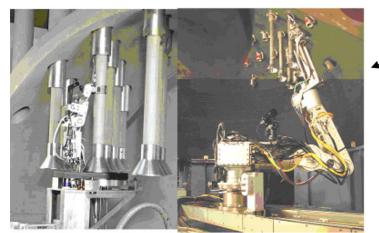

Alloy 600 Cracking History

- EPRI Report 1016771
- Cracking first observed in BWRs
- PWR observations in
 - Steam generator tubing failures
 - RPV Heads
- PZR and dissimilar metal welds now a concern


ALARA Principles to Reduce Alloy 600 Worker Dose

Current Inspection Challenges

- RPV Challenges
 - Interior nozzle to shell inspections are needed
 - Ultrasonic technologies employed
 - If indication is found, workers are required to manually verify/repair
- Steam Generator Challenges
 - Nozzle dams
 - Equipment failure of eddy current tests
- RPV Internals
 - Most technologies are remote
 - Water cleanliness is a key concern


RPV Bottom Mounted Nozzles

Inspection Technologies Phased Array Inspection

Inspection Technique Comparison 14" Nozzle (from WSI)

	Manual Conventional	Automated Conventional	Phased Array
Probes	10 – 15	8 - 10	1
Scans	15 – 20	12 – 15	4 - 6
Personnel	1	3	1
Examination Time (at weld)	5 + hrs	11 + hours	< 2 hours
Personnel Exposure	Greatest	Less than manual	Least

Automated conventional inspection

Phased array

© 2009 Electric Power Research Institute, Inc. All rights reserved.

Mitigation Technologies

- Several methods to reduce stresses in materials are in development
 - Overlays/inlays
 - Mechanical Stress
 Improvement Process
 (MSIP)
- Surface treatment techniques
 - Shot peening
 - Water jet peening
 - Laser peening

MSIP at Calvert Cliffs

Mitigation Technology Comparison

Technology	Advantages	Disadvantages
Manual Weld Overlay	-adaptable to complex configurations	-Labor intensive -Weld quality impacted by welder experience
Automated Weld Overlay	-Possible reduction in total time at worksite (dose reduction) -Better quality end product	-Cannot be used for all applications (configurations) -Higher cost than manual options
Remote Weld Overlay	 In theory dose not require continuous local oversight Better quality weld (reduction in post weld prep and false positive indications 	-Cannot be applied for all locations/pipe diameters -Higher cost than manual options
Weld Inlay	-Can be done with cavity flooded -Significantly less dose than outside pipe overlay (up to factor of 10 reduction)	-~8 units do not have outside pipe options -Requires cavity bridge use
Mechanical Stress Improvement Process (MSIP)	-Reduced time at weld (dose reduction) -Zero application failures to date	 -Requires equipment rigging at work site -Cannot be applied at all locations and pipe diameters

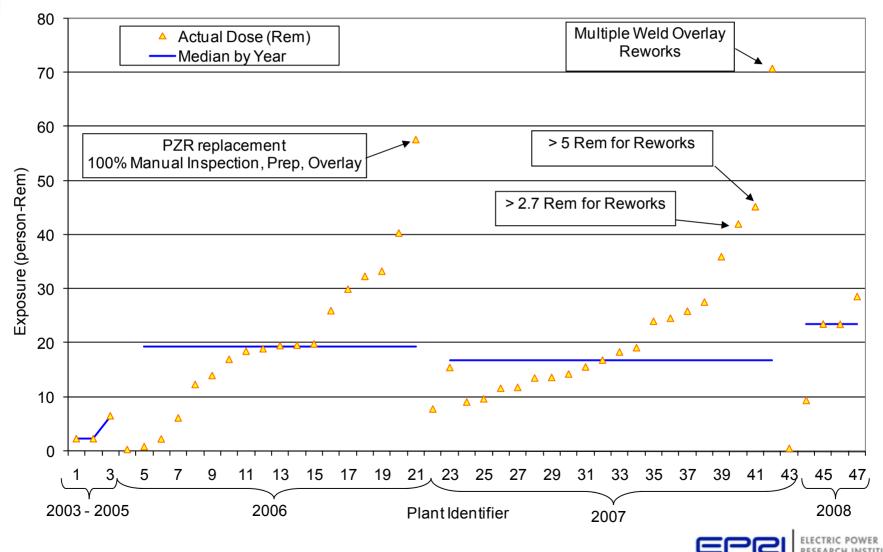
Local Source Term Reduction Initiatives

- Alternate Charging Path with "Clean" Water into Pressurizer
 - Flush spray line and surge line with clean/low activity water
 - Surge line and lower pressurizer filled with clean/low activity water (shielding)
- Hydrolazing internals
 - ANO hydrolazed a portion of pressurizer internals
 - Significant reduction in dose fields at bottom of pressurizer
- Catawba letdown pipe decontamination
 - More details in an earlier paper

Benchmarking Experiences: BWR Technologies and Experience

- Consulted with several areas to understand BWR experiences:
 - BWR station personnel
 - NDE subject matter experts
 - Vendors
- Conclusions:
 - BWR and PWR weld inspection and repair technology is the same
 - ALARA initiatives were similar
 - Some PWR technology improvements resulted from earlier BWR work
 - Merits continued monitoring

EPRI Benchmarking of Alloy 600 Tasks


- Alloy 600 Inspection Tasks collected
 - Most PWR utilities reported
 - Lessons-learned compiled
 - Details about
 - Mockup design and implementation
 - Job site preparation
 - Shielding package installation
 - Work processes
- Summary of Alloy 600 Exposure tasks included in EPRI Report

PZR Heater Penetration Sleeve Shields

Benchmarking Alloy 600 Mitigation Exposure Sorted by year, lowest to highest

© 2009 Electric Power Research Institute, Inc. All rights reserved

Conclusions

- Alloy 600 Inspections/Mitigation will continue to be a challenge
- Much work is in development to
 - Improve materials mitigation methods
 - Develop remote and automatic technologies
 - Facilitate technology transfer to upcoming inspections
- Benchmarking efforts will continue