

EPEI ELECTRIC POWER RESEARCH INSTITUTE

RP2020: EPRI Radiation Management Technical Objectives

Sean Bushart Dennis Hussey

ISOE North American ALARA Symposium/EPRI Radiation Protection Conference January 12th, 2009 Fort Lauderdale, FL

EPRI Presentation Overview

- Brief: Program Objectives and Deliverables
- Status of Current EPRI RP2020 Actions
- Looking Forward- A More Aggressive RP2020 Plan

Program Impacts on Plant Operations & Key Industry Issues

Program Actions and Deliverables

- Industry Strategic & Planning Roles
 - Lead cross functional collaboration (internal + external)
 - Technical basis for regulatory change
- Industry Technology Development Role
 - Innovative R&D
 - Technology demonstrations/ evaluations
- Leadership for Technical Guidance
 - Guidelines/guides and desk references
 - Application source books/decision trees
 - Benchmarking
- Unique Tech Transfer/ Application Role
 - Software/application tools
 - Communications/conferences/workshops
 - Onsite presence/assessments
 - Users groups

Reshape radiological protection at nuclear power plants to achieve significant improvements in safety performance and cost-effectiveness.

RP2020 Strategies and EPRI Status

- •Reduce radiation fields—EPRI
- Improve technologies utilization—EPRI
- •Standardize RP criteria & practices—INPO
- Redefine RP roles/responsibilities— NEI/INPO/EPRI
- Influence RP regulations—NEI

EPRI Source Term Reduction Strategy

 EPRI Source Term Reduction Program—Results through program collaboration

Application of the EPRI Standard Radiation Monitoring Program for PWR Radiation Field Reduction

Results

 Produced benchmarking tool to quantify benefits of source term reduction technology

Benefits

- Evaluate capital costs for radiation field reduction
 - Meet lower cumulative exposure goals

Application Development: 2008 ALARA Assessments performed at Palisades, Angra, and Koeberg

Current Source Term Reduction Deliverables

- Reports published in 2008
 - 1018371 BWR Source Term Reduction Estimating Cobalt Transport to the Reactor
 - 1016766 High Activity Crud Burst Impacts and Responses
 - 1016769 Program on Technology Innovation: Feasibility Assessment of a Core Vacuum for Foreign Material and Activity Removal
 - 1016767 Technology Evaluations and Operations Strategies for PWR Radiation Source Term Reduction (December, 2008)

Radiation Protection: Key Lessons Learned in Dose Reduction from Emergent Inspection/Mitigation Tasks

Keys to Success (included in 2007-2008 EPRI reports):

- Early Radiation Protection involvement required
- Reduce source term
- Be aware of remote versus automatic
- Understand weld preparation techniques
- Understand inspection techniques (some are better than others)
- Accurate, scaled, detailed mock-ups required
- Shield as much as possible
- Optimize scaffolding and insulation removal times

DC Cook PZR mock-up

McGuire specialized shielding

EPRI Scaffolding Program: Mitigating Dose from PWR/BWR Materials Degradation Work

EPRI Radiation Protection Deliverables

- Exposure Reduction:
 - 1016771 Dose Mitigation for Future Alloy 600 Inspections
 - 1016770 Technology Development to Improve Radiation Shielding for Material Inspections
- RMT Working Group Reports published to date:
 - RMT Guidelines for Radiation Protection: Field Implementation of Remote Monitoring, 1003687, 2004 *
 - RMT Guidelines for Radiation Protection: Training and Qualification, 1011739, 2005.
 - Remote Monitoring Technology Interim Report: Industry Best Practices and Lessons Learned, 1013508, 2006.

*2009 update: Addresses development and implementation of consistent formal processes and controls for monitoring radiological work using remote technology

Looking Forward.....

... <u>A more aggressive strategy</u>

- In development with subcommittee of key utility RP experts (Dennis Hussey, EPRI lead)
 - Larry Haynes, Duke
 - Willie Harris, Exelon
 - Ron Thurlow, FPL
- Will be reviewed at upcoming EPRI advisory meeting- comments welcome

RP2020 Key Challenges

Workforce and Infrastructure

- RP Staff is getting older
- Younger staff change careers
- Technology implementation is lagging

Lower Dose Limits

- NRC adoption of ICRP 10 Rem over 5 years is expected
 - 2 Rem/year limit may be adopted
- Many workers still approach or exceed 2 Rem/year

EPRI Response to RP2020 Challenges

© 2006 Electric Power Research Institute, Inc. All rights reserved.

Strategy for RP **Technology Program**

- Get the data
 - Early identification of high dose tasks, e.g. Alloy 600
- Determine highest dose jobs
- Target causes for high dose
 - Source term
 - Time in field
 - Distance too close
 - Not enough shielding
- Investigate/develop ways to reduce the causes of dose
- Challenge utilities to implement strategies

EPRI Support of RP2020 <u>RP Technology Program Objectives</u>

- While maintaining nuclear safety, challenge industry to:
 - Optimize maintenance practices
 - Reduce outage scope
 - Safely optimize job coverage
- Each objective is defined the following slides

Optimize Maintenance Practices for ALARA

- Target: How can ALARA be optimized?
 - Example: Remote UT inspections
 - Insulation removal reduction
 - Modular insulation
 - Scaffolding
 - Can inspection frequencies be safely extended with technology?
 - Alternative monitoring (temperature, vibration)
 - Thermography for valve inspection (Browns Ferry)
 - Modeling packages to simulate wear

Reduce Outage Scope

- Target: Improved equipment reliability for the high dose jobs
- Examples: Challenge vendors to improve
 - Valve packing materials
 - Updated pump designs and materials
 - Use ALARA to justify costs of a better design
 - Look at other industries to see how higher pressure valves are designed
- Other industry practices for working in radiation areas
 - Glove box work environments
 - Lessons-learned from DOE

Safely Optimize Coverage

- Target: Enhanced communication for everyone working in a radiation field
- Examples: Qualifying technologies for better communication
 - Perform engineering/risk analyses (e.g. 50.59) of technologies
 - Bluetooth communication with all workers
 - Enhanced remote monitoring
 - Heat stress prediction
 - Helmet cameras
 - Working with wireless technology
 - Improved applied visualization—Combine 3D imaging with surveys

- Develop strategy and finalize data collection in 2009
- 2010 is start of the program
 - Analysis of high dose tasks
 - BWR/PWR ALARA groups appear to be strongest resource
 - Select candidate tasks to optimize
 - Collaborate with other EPRI Programs/Groups
 - Evaluate technologies for reducing the task doses
- 2011
 - Develop candidate technologies
 - Select pilot technologies that can be implemented at plants

Conclusions

- Significant progress has been made on EPRI RP2020 objectives to date
 - Source term reduction
 - Improved RP technology Utilization
- EPRI Radiation Management Program is planning a newly focused RP Technology Exploration
 - Any feedback is greatly appreciated
 - Industry participation is key to success

Key 2009 EPRI RM Meetings

- Conferences and Workshops
 - 2009 ISOE/EPRI ALARA Symposium and RP Technology Conference, Jan 12-14 Fort Lauderdale, FL
- Project Meetings
 - Scaffold Guidelines Development
 - Meeting 1 Feb 10 & 11, 2009, Charlotte, NC
 - Meeting 2 TBD, June 2009
 - Scaffold Workshop TBD, June, 2009
 - RAM Control Guidelines (3rd meeting)—TBD, April, 2009
 - SRMP General Area/Smear Workshop—TBD

(watch the calendar at <u>www.epri.com</u> for details)