

EPEI ELECTRIC POWER RESEARCH INSTITUTE

EPRI Assessment of Potential Worker Dose Impacts from More Restrictive Dose Limits

Paul Saunders, Suncoast Solutions, Inc. Dennis Quinn, DAQ, Inc.

EPRI Project Manager: Phung Tran

2011 ISOE North American ALARA Symposium & EPRI Radiation Protection Conference

Radiation Management Program Drivers and Goals

- Regulatory Drivers (NRC):
 - 10 CFR 20 and 10 CFR 50, Appendix I Update to Align with ICRP 103 Recommendations

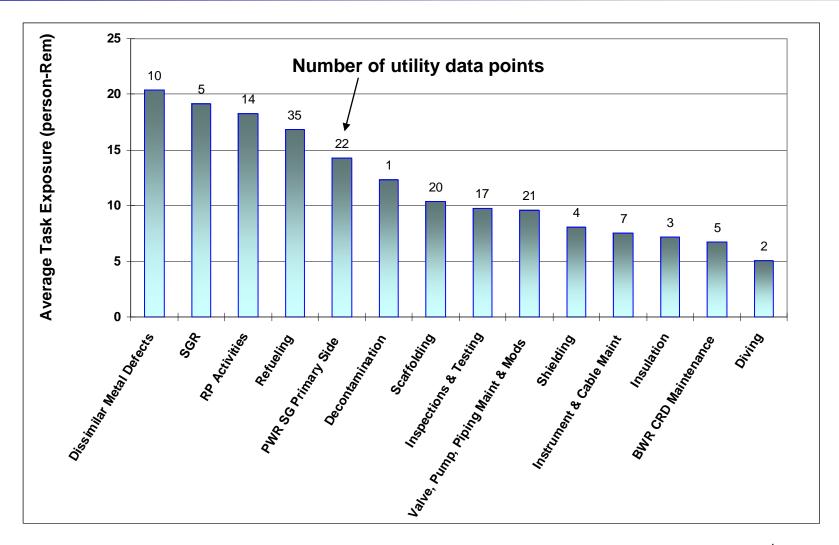
Most Significant Change: <u>Reduction in Individual Dose Limits</u>

- Industry Performance Drivers (INPO):
 - New INPO cumulative radiation exposure (CRE) dose goals (cycle median) by the end of 2015:
 - PWR: 55 person-Rem
 - BWR: 110 person-Rem
 - Eliminate/Reduce High Radiation Areas
 - Reduce Contaminated Areas
 - Reduce Personal Contamination Events (PCEs)

2

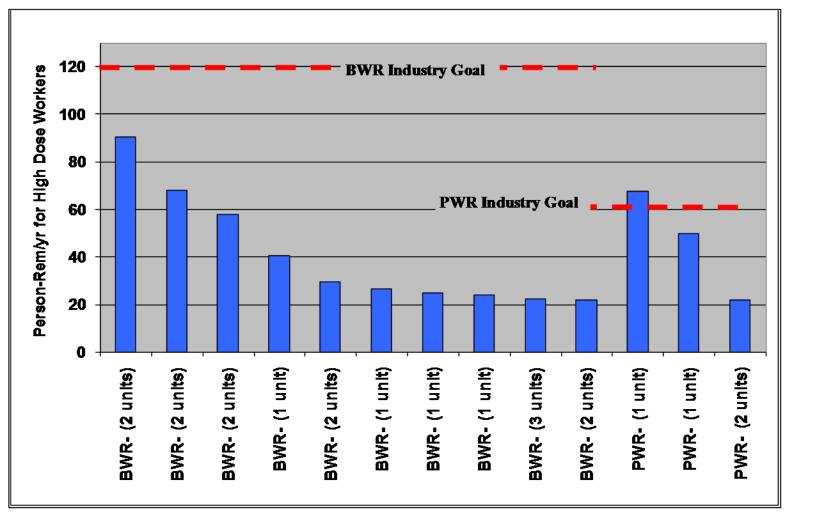
Radiation Management Program Drivers and Goals (continued)

- EPRI Radiation Management Program Goals:
 - Primary Goal
 - Provide tools, technologies, and techniques to reduce individual dose and cumulative dose:
 - All workers < 2 rem/yr by 2015
 - All workers < 1.5 rem/yr by 2020
 - Secondary GoalS
 - Reduce High Radiation Areas
 - Reduce Contaminated Areas



Approach

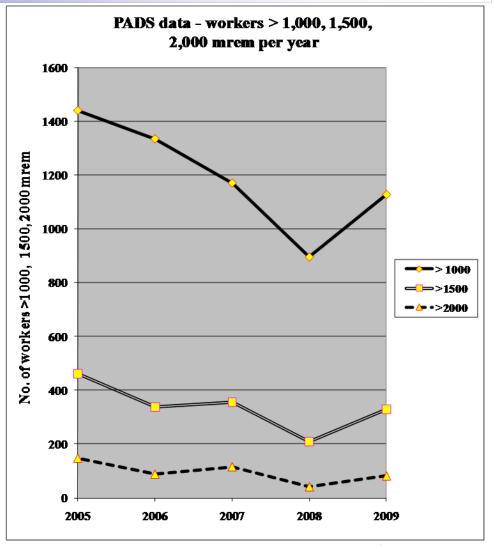
- Data
 - Industry cumulative task/ exposure data from 34 BWR and PWR sites
 - Individual dose data from PADS was evaluated
 - 27 PWRs and 13 BWRs
 - Task type, worker trade/profession, reactor site
- Identify tasks with highest impact on collective and individual radiation exposure
- Information from other data sources was evaluated
 - INPO, NRC, NEI and industry owners groups
 - MRP, BWR/VIP, NDE and SG maintenance
- Technologies were evaluated
 - In development and commercially available
 - Reduce exposure related to specific tasks or evolutions
 - Identify gaps where improved or alternate technology is warranted
 - ID opportunities for field application
- Input and technical support from 49 peers and other industry experts



Average Task Exposure for High Dose Tasks (Utility Data)

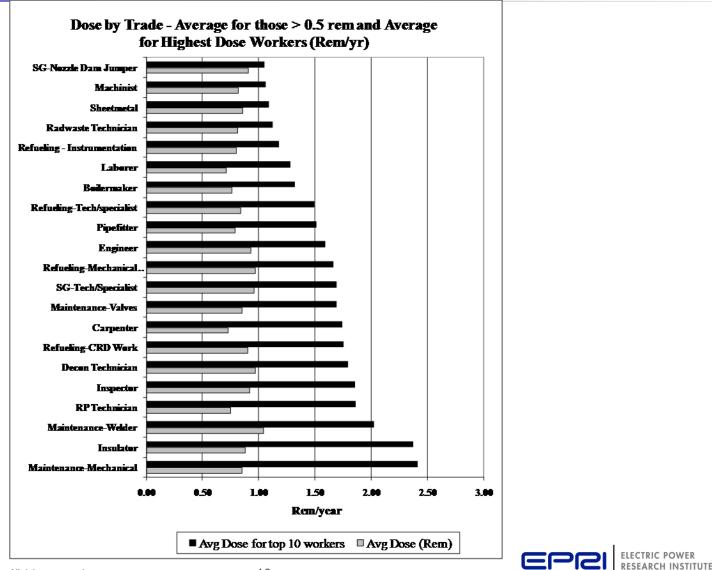
Cumulative Dose Analysis – Person-Rem per Year for High Dose Workers (PADS Data)

Workers that received >500 millirem per site visit


Cumulative Dose Analysis – The Affect

- <u>Significant fraction of the industry per-reactor per-year</u> goal is attributable to high dose workers
 - Note that 2 reactor dose is site total (previous slide)
- <u>2 single unit PWRs in the 50-60 person rem / year range</u>
 <u>Industry PWR target = 55 person rem per year</u>

Individual Dose Analysis – Workers Exceeding 1, 1.5, and 2 Rem per Year


- 2009 Data
- 104 operating reactors
- 81 individuals > 2 rem
- 328 individuals > 1.5 rem
- 1126 individuals > 1.0 rem
- 1535 workers > 1.0 Rem

Individual Dose Analysis -Highest Average Dose per Worker (for > 1 rem workers)

Task	Average Dose per person (millirem)
Inspections	1,522
Decontamination	1,479
Radiation Protection	1,450
Valve maintenance	1,440
Pump Maintenance	1,430
Insulation	1,430
CRD exchange	1,420
Dissimilar Metals Project - Repair/replacement	1,392
Major Projects	1,371
Refueling - Reactor head lift and replacement	1,365
Refueling Reactor head studs	1,336
SG Nozzle dam installation & removal	1,335
SG Eddy current testing	1,333
Refueling - Undervessel activities - instrumentation	

Individual Dose Analysis -Dose by Trade - for Workers > 0.5 Rem

© 2011 Electric Power Research Institute, Inc. All rights reserved.

Individual Dose Analysis – The Affect

- Highest dose plants challenged to meet 2 rem per year
- Administrative limit = 1 rem per year?
- Several hundred individuals who are receiving over 500 mrem per visit
- Spring outages will severely affect skill set availability for remainder of the year
- Exacerbates current staffing challenges

Task Analysis – Utility Outage Reports

Priority Ranking	Primary Task, Component, or Evolution		Contributor to Individual Dose of > 1 person- Rem Annually			Recurring (R) or	
			In single outage or for single task	•	Not Normally	Infrequent (I)	Causal Factor(s)
1	Refueling	PWR and BWR reactor head stud removal and replacement – close proximity to reactor head for several workers to detension, remove, replace and re- tension studs. Equipment may be air, electric, or hydraulic or a combination of one or more of those.		x		R	 Technology - stuck or galled threading on studs. Inadequate shielding on reactor head. Rigging – failures of hoist used for shielding and/or stud handling. Tensioning tooling failure. Inadequate cavity decon after draindown. Workers proximity and time relative to head or cavity debris source term. Worker inexperience.

Solutions: Technology Evaluation

- Activity Removal from Liquid: Underwater Demineralizer System
 - Used in BWRs, one PWR design, 2011 target technology
- Activity Removal from Liquid: Isotope Selective Media
 - Tested in 2010 by RSI, works as designed, required media structure mod.
- Activity Removal from Surfaces: DeconGeITM Capture Decontamination
 - Has not been applied to full cavity, long cure time
- Activity Removal from Surfaces: Hydrogen Peroxide
 - Used at several stations, specific components (e.g., JAF), some cavity decon
- Activity Removal from Surfaces: ElectroDecon[™] Chemical Decontamination
 - Has not been applied to full cavity, viable, but appears to be labor intensive for large surfaces
- Communication: Frontline Communicator
 - Deployed, viable solution
- Communication: Vocera System
 - Deployed, viable solution

Solutions: Technology Evaluation (cont.)

Radiation Shield System: Charging Method for Tungsten Balls

- Deployed in 5 Japanese reactors, demonstration planning in progress for 2011 at Calvert Cliffs site
- Radiation Survey Technology: RadBall
 - Viable technology, recent advances in sensitivity (99% improvement), evaluating demonstration at a Duke site in 2011

Component Removal and Installation: Hydraulic Nuts (HydraNuts)

 Deployed at many reactors, 2010 application at Quad Cities, 2011 planned deployment at Comanche Peak

Surface Pretreatment: Hi-F Coat Surface Treatment

 Deployed at one Japanese reactor, in-situ decon and coating, merits investigation in 2011 & 2012

Solutions: Technology Evaluation (cont.)

• Human Performance/ Error Reduction: Interactive Virtual Reality

 Not developed for nuclear, would provide significant benefit, very high initial investment, merits continued observation

• Vertical Access: Modular Bridge

Deployed at Nine Mile Point, simple solution, local fabrication, custom design by application

Vertical Access: X-Deck

 Deployed at several reactors, simple solution, replaces scaffolding up to 6' in height

Work Control Planning and Scheduling, Modification Design: Laser Scanning

- Deployed at very large number of reactors worldwide as an engineering tool, excellent tool for work control and ALARA planning, estimating, shielding and scaffolding
- Integral part of EPRI 3D-EDE Algorithm and ALARA Planning Tool development project

© 2011 Electric Power Research Institute, Inc. All rights reserved.

Solutions: Technology Application

Primary Task, Component, or Evolution	Specific Task(s)	Causal Factor(s)	Candidate Technology	Candidate Host Site
	PWR and BWR reactor head stud removal and replacement	Technology - stuck studs.	HydraNuts	Comanche Peak
Defueling		Inadequate shielding.	Charging Method for Tungsten Balls	
Refueling		Rigging – failures of hoist used for shielding and/or stud handling.		
		Tensioning tooling failure.	HydraNuts	Comanche Peak

Summary and Conclusions

- Challenges to meet lower individual and collective dose targets.
- In terms of specific repetitive jobs, refueling and PWR steam generator eddy current testing were high in both individual and collective dose.
- Insulators, carpenters (scaffolding), welders, radiation protection technicians, inspection personnel, and decontamination workers were the highest for individual and collective dose.
- Refueling is recommended as a major repetitive task that merits further evaluation.
 - Other tasks with higher collective dose
 - Refueling has high individual dose, high collective dose, repetitive, and highly skilled workers
 - Refueling is almost always on critical path
 - Improvements in technology or efficiency from a dose reduction aspect will likely result in decreased critical path time

Summary and Conclusions (cont.)

- <u>Three specific technologies targeted that may reduce refuelling</u> <u>dose:</u>
 - Tri Nuclear underwater ion exchanger for <u>PWR</u> cavities
 - Used in BWRs, one PWR design available
 - GE HGNE's Hi-F decon and coating process
 - Successfully implemented in Japan at Shimane Unit
 - Process involves decon (Potassium Permanganate, Oxalic Acid, Hydrazine) followed by Hi-F Treatment
 - GE Hitachi's BWR CRD vortex flush
 - New concept, developed at Dresden
 - Adapt to PWR head configurations?

2011 - Refueling Activity Dose Reduction

- Working Group
 - Utilities, EPRI, INPO, refueling vendors, technology suppliers
- BWR and PWR host site
- Identify specific causal factors
 - Fields
 - Source
 - Activities
 - Options
- Technology Applications
 - Traditional including shielding, remote, etc.
 - Three specific technologies on previous slide
- Standardization of Dose and Activity Tracking
 - For specific tasks

2010 Report Information

• EPRI Report # 1021100; "Assessment of Potential Worker Dose Impacts to Radiation Protection Programs Due to Recommendations in ICRP -103, and Evaluation of Nuclear Industry High Dose Jobs and Technologies"

Together...Shaping the Future of Electricity

