
EPEI ELECTRIC POWER RESEARCH INSTITUTE

PWR Zinc Program Overview

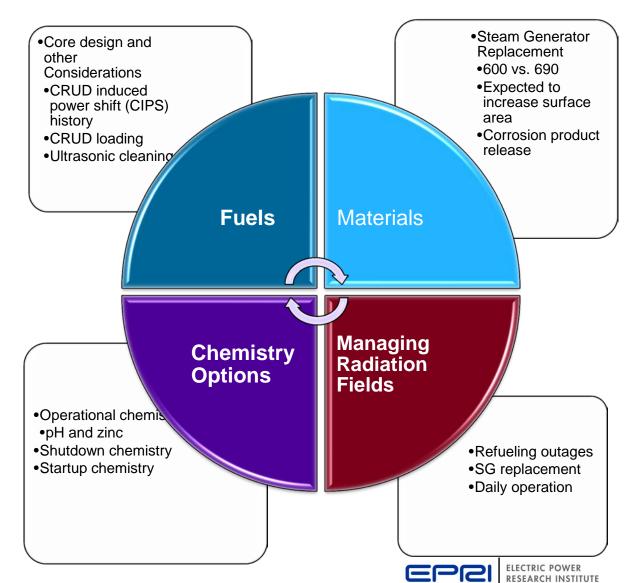
David Perkins Program Manager Rick Reid Senior Technical Leader

International Symposium on Occupational Exposure North America January, 2014

Source Term – A Process

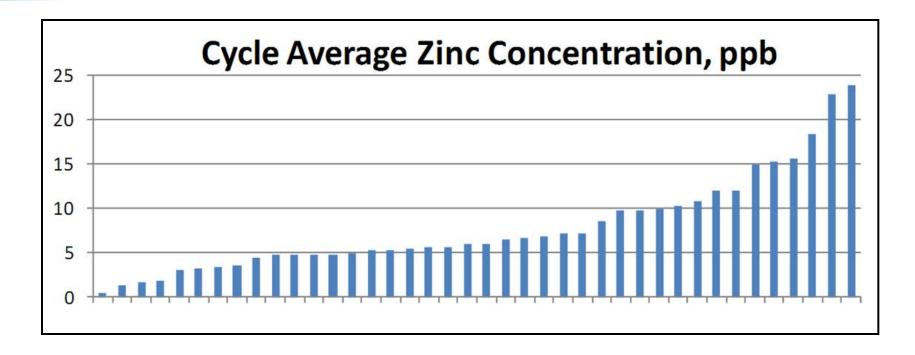
✓ 2014 Fundamental Activity: SRMP/BRAC (Continuing)

ELECTRIC POWER


Activity Incorporation

- Large piping surfaces and areas with high flow
 - Activity incorporation appears driven by soluble incorporation
 - Fluid shear is very high in the core and primary circuit piping
- Small bore piping or low flow areas
 - Particulate drop out or deposition will increase local area dose rates
 - Dead-legs, cleanup piping and other low flow areas have relatively low shear forces, increased potential for deposition

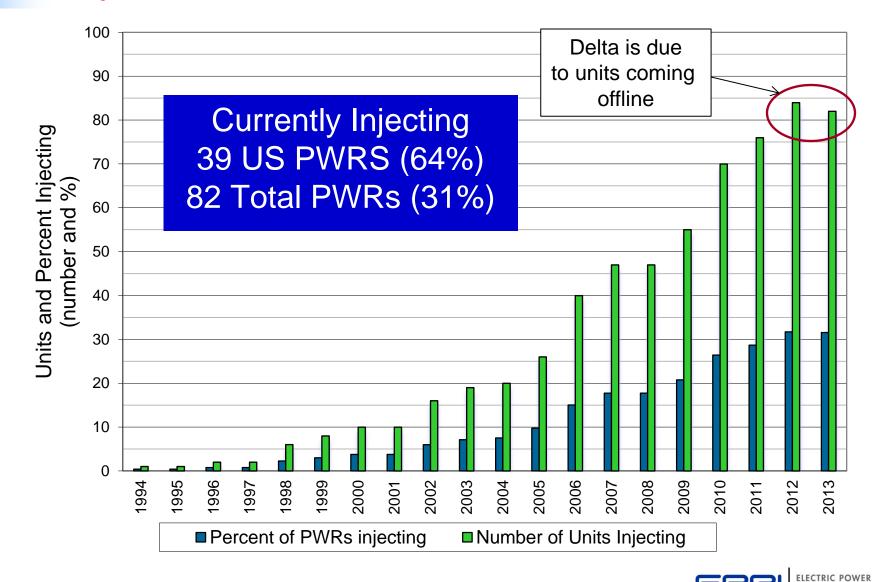
PWR Zinc Injection Why Zinc or Where does Zinc Injection fit?


- Challenge: Zinc impacts multiple programs
- Impacts to Consider:
 - Fuel performance
 - Short-term to longterm
 - Materials
 - Chemistry program changes
 - Long-term dose rates

PWR Zinc Injection *Program Strategies*

- All plants report using depleted zinc
- Target Concentration
 - Implementation Strategy -low 5 ppb target
 - Mid-cycle zinc injection
 - 5ppb zinc target maintained for remainder of cycle
 - Interim Strategies increasing target zinc concentration
 - Initial target zinc concentration low (5-10 ppb)
 - Over two or more cycles zinc target concentration is gradually increased
 - Several months at 5-10 ppb, several months at 15 ppb, last few months of cycle at 20 ppb

U.S. PWR Reactor Coolant Chemistry


Target values outside the US similar; typically 5 to 15 ppb Target values have decreased over time based on field experience and laboratory testing

PWR Zinc Injection *Program Strategies*

- Intermittent injection strategies
 - Units limited to partial injection cycles
 - Limited by fuel design or chemistry controls
 - Challenging strategy
 - Zinc injected during end-of-cycle operations and impact on startup
 - Lowering zinc concentration and in some cases, zinc concentration reduced to not detectable
 - Impact of strategy related to corrosion and other changes
- Maintenance injection strategies
 - Long-term mature plants

PWR Zinc Injection Status *Zinc Injection Worldwide*

Recently Started and Planned Zinc Injection Programs

Country	Started 2011-2013	Planned for 2014-2016	Total 2011-2016
Korea		15	15
France	13	1	14
US	2	4	6
Japan	0	3	3
South Africa		2	2
Total	16	24	40

Field Experience with Zinc Dose Rate Reduction Effectiveness

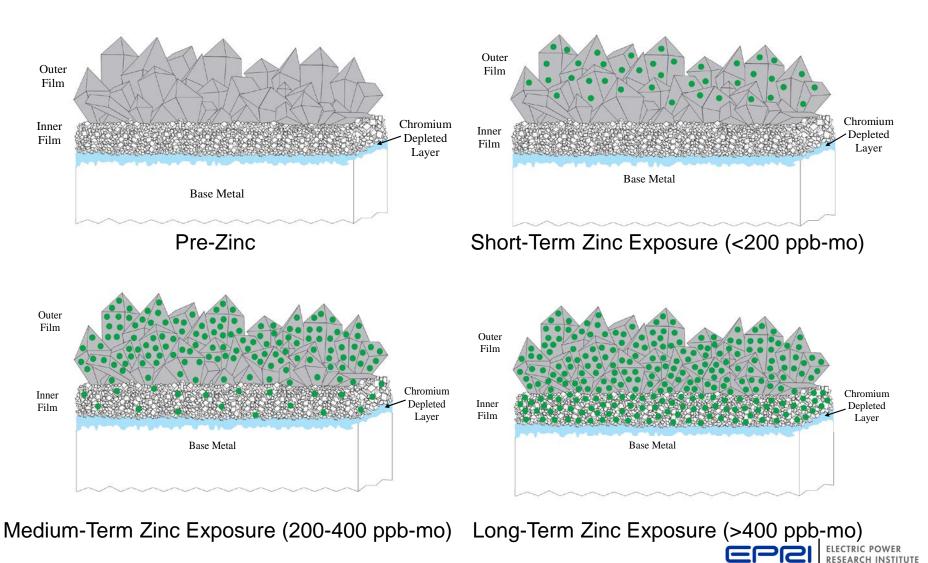
- Overall, long-term zinc injection expected to reduce out-of-core dose rates by a factor of three or more
 - Dependent on initial conditions
 - Dependent on operational factors
- Expected benefit realized by >90% of plants
- Plants that have not fully realized the expected benefit of the dose rate reduction expectations
 - Behavior likely due to known factors and part of a longer-term evaluation and monitoring of zinc injection
 - Inconsistent injection strategies (restarting injection later in the cycle compared to consistent injection strategies)
 - Mid-cycle outages
 - Short injection with high cobalt-60 film

Radiation Field Characterization

• 2012-2013 Project

- Revision of SRMP and BRAC
- Publication scheduled for early 2014
- Roll-out communication(s)
- Targeting new data collection in Fall 2014

Improved Radiation Field Data



Zinc Effect on Out-of-Core Dose Rates

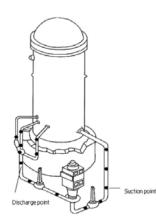
- Debate continues on exact mechanism
- Most simply, zinc adsorbs and incorporates into the oxide film, blocking new uptake of radiocobalt
 - Negligible substitution for existing radiocobalt
 - Effect considered primarily due to orders of magnitude higher zinc concentration relative to radiocobalt
 - Long-term, also reduces release of new corrosion products to the coolant
 - Diffusion into the oxide is very slow (many cycles)

Schematic of the Corrosion Film Formed on Stainless Steel or Nickel Alloys in Primary Water

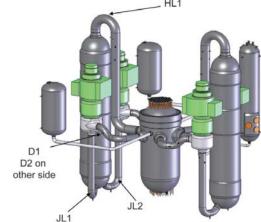
Zinc Sourcebook Revision Overview

- Expanded and Updated Technical Basis Discussion
 - R&D and Field Experience on fuel effects, dose rate reduction and nickel alloy primary water stress corrosion cracking (PWSCC)
 - PWSCC and other corrosion mechanisms work
 - Fuels impact
 - Dose rate impact
- Extensive Operating Experience (OE)
 - OE now presented in a separate volume
 - Data from 46 plants
- Focus Changed from Program Implementation to Program Maintenance

Zinc Sourcebook Revision Background (1/2)


- PWR Primary Water Zinc Application Guidelines Rev. 0 published in 2006
- Need for additional guidance identified:
 - Update the current industry experience (dose reduction curves, chemical mitigation assessments, core duty base expansion)
 - Identify best practices and develop a long term zinc injection strategy for all plants, including those with high duty cores
 - Develop guidance for operational decision making related to zinc injection strategies (major component replacement, power uprate, etc.)

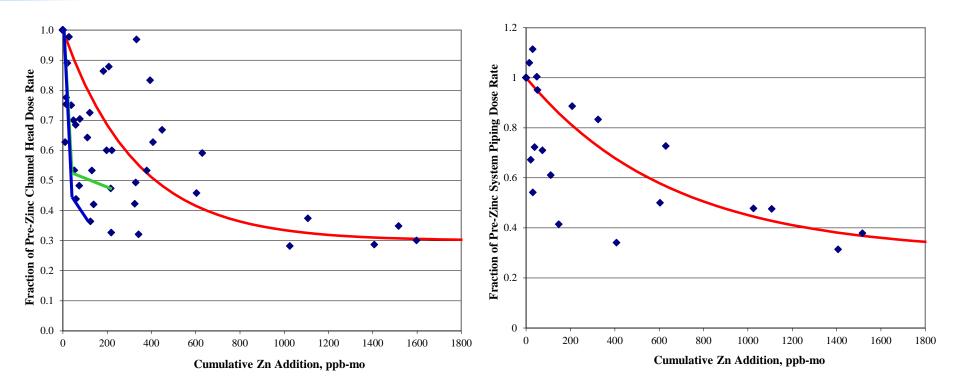
Standard Radiation Monitoring Programs BRAC and SRMP


<u>BWR Radiation Level</u> <u>Assessment and Control</u>

- 1977 current
- 2013 Report (3002000565)

PWR – <u>Standard Radiation</u> <u>Monitoring Program</u>

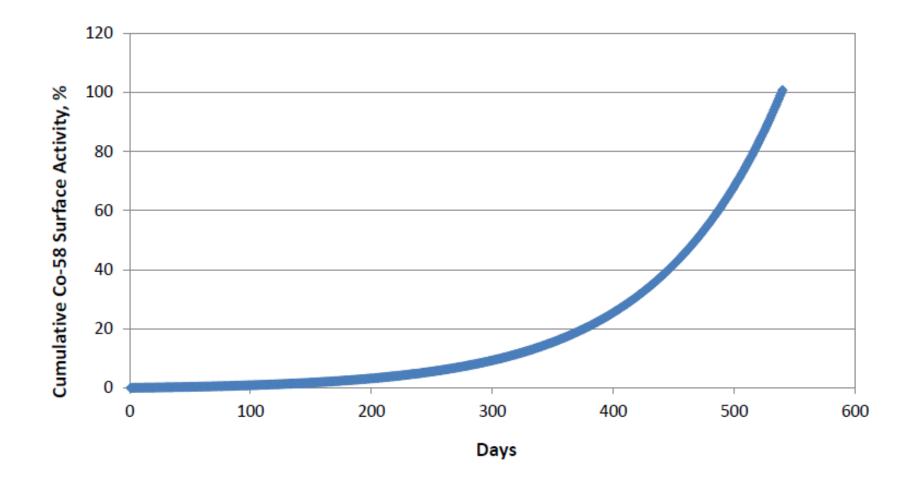
- 1978 to 1996, 2005 current
- 2013 Report (3002000529)



Important Uses:

- 1. Used to assess effectiveness of source term reduction techniques
- 2. Supports plant benchmarking efforts

Effect of Zinc on Out-of-Core Dose Rates


Channel Head Dose Rates

Piping Dose Rates

Long-term, dose rates expected to be reduced by a factor of three or more relative to pre-zinc levels

Co-58 Surface Activity Calculations End-of-Cycle Impact?

© 2014 Electric Power Research Institute, Inc. All rights reserved.

Factors Affecting Zinc Effectiveness (1/2)

- Characteristics of pre-zinc oxide film
 - -Age
 - Thickness
 - Morphology
 - Cobalt-60 concentration
- Zinc injection factors
 - Cumulative exposure
 - Target concentration
 - Timing of initiation/termination each cycle
 - Consistency of injection
 - Particularly periods where zinc injection is suspended

Factors Affecting Zinc Effectiveness (2/2)

- Component replacement
- Fuel effects
 - Fuel cleaning
 - Core loading
 - Core duty
 - Fuel failures
- Mid-cycle outages
- Coolant particulate burden

Zinc Related Research and Development Activities (1/2)

- PWR zinc effectiveness assessment: first cycle gamma scanning at Davis Besse
 - Will be performed during spring 2014 outage
- Effect of PWR zinc addition on corrosion product release rates: review of laboratory testing and field experience
 - Work on-going
 - Draft report under review
- Evaluation of atypical dose rate response to zinc addition
 - Scheduled completion first quarter 2014

Status of Zinc-Related Research and Development Activities and Deliverables (2/2)

- Experience summary and guidance on analytical methods for total and dissolved zinc
 - Effort started with information survey
 - Additional input and evaluation needed
- 2013 Technical Update Report
 - PWR Zinc Addition Effectiveness Assessment: Baseline Surface Activity Concentrations by Gamma Scanning at Davis Besse. EPRI, Palo Alto, CA: 2013.3002001688.

On Going and Future Work

- Complete evaluation of plants with atypical dose rate response
 - Conclusively identify causative factors to the extent practicable
- Determine needs for additional laboratory testing
- Develop guidance for existing zinc plants to improve effectiveness
 - Including guidance for predicting response to nonchemistry related operational factors
- Improve guidance for non-zinc plants to evaluate expected benefits on a more plant-specific basis

Key Take Aways

- PWR zinc injection has demonstrated benefits over a nearly 20-year period
 - More than 80 PWRs currently injecting
- Additional plants continuing to initiate zinc injection
- Additional research ongoing to understand key factors that influence effectiveness
 - Results will be enhanced guidance for both current and prospective zinc users

Zinc injection is an important tool in radiation reduction efforts

Together...Shaping the Future of Electricity