

ALARA in Repair of Reactor Vessel Flange Surface at Krško NPP, 2019

CONTRACTOR: FRAMATOME

Borut Breznik, Krško NPP

INTRODUCTION

Repair of a reactor vessel flange means repair of corrosion pits and other indications.

They could be the result of many years of the reactor operation and can lead to the damages of the flange face. The flange repair is, therefore, an important maintenance step to help prevent leakages.

ALARA planning is presented with focus on workplace shielding, personal protection and the dosimetry related to this job.

Selected Repair Positions

Location of the 11 indications on the RV Flange based on Laser Scanning measurement. Final decision on repair: 11 + 5

DOSE RATE SURVEY 2018

DOSE RATE SURVEY 2019

NEW SHIELDING MATERIAL FOR THE WORK LOCATION

SHIELDING CASSETTES FOR THE FLANGE - Lead 40mm

SHIELDING WORK SEQUENCES

- a) Reactor cavity walls rough washing with demineralized water
- b) Reactor cavity decontamination
- c) Survey of removable and fixed contamination

d) Cover installation on the reactor vessel

- e) Sealing flange wiping
- f) Laser scanning
- g) Installation of shielding cassettes
- h) Placing of lead blankets on reactor vessel flange (prior check removable contamination and wipe locally)
- i) Placing of lead blankets on the shielding cover of the RV
- j) Performing dose rate measurements (if hot spots detected, additional lead blankets should be used)

k) Installation of temporary shielding wall

INSTALLATION OF THE COVER

RADIATION ABOVE THE COVER (0,5m)

RV FLANGE CONTACT DOSE RATES AND CONTAMINATION ON THE SMEARS RADIATION SURVEY AFTER INSTALLATION OF THE COVER

LEAD BLANKETS and SHIELDING WALL

Working area	Layers	Quantity of lead blankets
Shielding cover	2	76*
RV Flange	3	93
Guide Pins	2	36
Total		205

Shielding cover and the cassettes

Shielding wall (against RV upper internals)

internals

t structure with lead blanket

DOSE RATES WITH THE SHIELDS

WORK STARTS After finishing the repair works of one position, the unshielded position was shielded again.

ALARA PLANNING FOR DIFFERENT TASKS

MAIN TASK: Repair by welding, grinding, stoning and polishing

- LASER SCANNING
- RV FLANGE REPAIR
 41 man-mSv

- FME

TOTAL COLLECTIVE DOSE

CONSERVATIVE ESTIMATION

FRAMATOME

Initial ALARA (dose rate 2 mSv/h)

taking into account higher levels of radiation and previous experiences

- TOTAL 72 man-mSv

ALARA ESTIMATION of NEK

projection with optimal radiation levels

- OPTIMAL TOTAL 30 man-mSv
- REALISTIC TOTAL **35 man-mSV**

DOSE LIMIT and TRACKING

- Individual dose limit 4 mSv (FRAMATOME)
- Short duration of work in a high dose rate area

Dose tracking was performed locally by NEK RP engineer with a handy receiver for an additional electronic dosimeters and short radio link.

WORK ON ONE OF THE FLANGE SECTORS

FULL FACE MASK SCREEN FOR WELDING WORK

Full face mask with automatic speed glasses (Scott)

XnView Classic - [DSC00514 (002),JPG]
 Datoteka Urejanje Pogled Slika Filter Orodja Okno Informacije
 DSC00514 (002),JPG

| 💽 ▼ 🙀 | 🖉 🛄 🧔 🕲 ≒ ▼ 🚍 ▼ 👷 | �, ♀, ▼ �, | ♀ ♥ 🖉 ♥ 🛒 ▼ | 🖾 😰 ▼ AA 🚔 🚍 🐻 🕸 🚳

139/324 DSC00514 (002) JPG 7.66 MB 5152x3864x24, 1.33 50% X:2136, Y:1874

GRINDING, STONING AND POLISHING

Radiation Protection Glasses (lead equivalency of 0.75mm)

EXAMPLE PHOTO OF REPAIRED POSITION No.1

 \bigcirc

П

X

😻 XnView Classic - [Po varjenju (002).JPG]

😻 Datoteka Urejanje Pogled Slika Filter Orodja Okno Informacije

🖪 Po varjenju (002).JPG

209/326 Po varjenju (002).JPG 6.59 MB 5152x3864x24, 1.33 70% X:2822, Y:807

DOSIMETRY RESULTS - FRAMATOME WORKERS

Eye dosimeters were not practical for welder's use

FINAL COLLECTIVE DOSE

FRAMATOME20 man-mSvNEK8 man-mSv

(0.6 man-mSv on shielding wall)

FINAL REMARKS

TIME - HIGHLY PROFESSIONAL TEAM WELL PREPARED (TO COMPLETE THE WORK IN A SHORT TIME AVAILABLE)

SOURCE REMOVAL AND SHIELDING LOWER DOSE RATES THAN EXPECTED AFTER DECONTAMINATION AND SHIELDING

INDIVIDUAL DOSE MONITORING SHORT LINK CONTROL BY ADDITIONAL LOCAL ELECTR. DOSIMETER DISPLAY

- □ **PASSIVE DOSIMETRY** FINGER RINGS AND EYE DOSIMETERS
- □ NO INTERNAL CONTAMINATION DETECTED
- MAXIMUM INDIVIDUAL DOSE 2 mSv and FINAL COLLECTIVE DOSE - LOWER THAN PROJECTED