

## The reference monetary value of the man-sievert Outcomes of an ISOE survey

Sylvain ANDRESZ<sup>1</sup>, Caroline SCHIEBER<sup>1</sup>, Thomas JOBERT<sup>2</sup>

<sup>1</sup> Nuclear Evaluation Protection Centre (CEPN), France

<sup>2</sup> EDF/Direction Technique de la DIPNN, France

ISOE Symposium, Uppsala 26<sup>th</sup> June 2018

cepn

### The concept



#### **α** : "the amount you agree to spend *a priori* to avoid a unit of collective dose"

 $\Rightarrow$  To assess the 'reasonableness' of a radiation protection decision, give priority and objectivity to the decision

Who use the concept? For what purposes? Values?

### The 2017 ISOE survey



⇒ 21 utilities and NPP (~ 220 reactors)

cepn



### Answers from regulatory bodies

| Countries                                                                                                                                                 | α values                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Belarus, Belgium, Canada,<br>China, Finland, France,<br>Germany, Japan, Lithuania,<br>The Netherland, Slovenia,<br>Spain, Sweden,<br>Switzerland, Ukraine | Ø                                                                                                                                                                                                                                              |
| United Kingdom                                                                                                                                            | ⇒ To be based on a value of 3 millions $€_{2017}$ (general value; associated with the prevention of a cancer)                                                                                                                                  |
| Czech Republic<br>Slovakia                                                                                                                                | <ul> <li>⇒ Several α values are recommended and appeared in regulatory documents</li> <li>⇒ 7 values are proposed, depending on the level of exposure and the exposure situation</li> <li>⇒ From 30 to 600 €<sub>2016</sub>/man.mSv</li> </ul> |



## Answers from utilities & NPP Analysis – single αvalue

From **446 to 5,000 €/man.mSv** – Median = 1,200 €/man.mSv



⇒ Different *economics context* between the countries ⇒ *Updates*  $\pm$  *recent* 

but these cannot be the only explanations!



 $\Rightarrow$  Essentially: *different approaches* for setting $\alpha$ 

- 'human capital' method (Cernavoda NPP)
- Value of Statistical Life + annual costs of a worker (Cook NPP)

• *α* set by considering the values of other utilities (Vattenfall)

⇒ Local radiation protection situation can also be taken into account

• Ex. α linked with the INPO ranking (Exelon (hybrid system))

## Answers from utilities & NPP Analysis – set of αvalues



#### $\Rightarrow \alpha$ increases with the **level of exposure**

Allow to spend more as the level of exposure increase

- Level of exposure are expressed very differently
- Dependence of α<sub>min</sub>, ..., α<sub>max</sub> with the calculation model :

Ex. EDF:  $\alpha(d) = \alpha_{ref} \cdot (d/d_0)^a$ ;  $d_0 = 1$  mSv, a = 0,5



Leibstadt NPP 2 bands of individual exposure; 1-20 mSv

Krsko NPP 2 bands of collective exposure; 50 H.mSv

EDF 3 bands of individual exposure; 1-20 mSv



Some tendencies since the previous ISOE surveys:

- The concept have been maintained or introduced (TEPCO, Japon)
- Increase of some values (USA, Sweden)
- New methods to setα : Statistical Value of Human Life, feedback from other utilities

### Answers from utilities & NPP Uses and users



#### ⇒ Used 1-10 times/year/organisation

- $\Rightarrow$  Several examples of uses described
  - Major modification, large scale project, chemical decontamination of system/circuit, power reduction
  - Give priority to modifications on a long-term perspective



⇒ Only for 'important' decisions with radiation protection + economic + management etc. impacts

 $\Rightarrow$  Radiation Protection Department first involved to elaborate the cost-benefit analysis ; the decision is then taken at higher level

"

A tool that allow more objectivity and transparency in the decision  $\mathcal{H}$ — A tool among many [many] other decision factors

## cepn

## Setting and using the reference value of the man-sievert A synthesis



At the Gustavinum museum, Uppsala, Sweden

## Setting and using the reference value of the man-sievert A synthesis

- Introduced in 1973, disseminated and still in use
- Comparing the collected values is not easy
  - different economic conditions, approaches (single vs. set), RP conditions, calculation etc.
- Used by Radiation Protection Department to give objectivity to the decision in a complex decisional context
- An help for the decision, not a decision cutting-value
- Trends:
  - A sustainable use of  $\alpha$  over the years; regular updates + introduction
  - Appearance of more overall methods for setting α
- In-line with trends in other sectors:
  - Judgment-value (Thomas, P. J., Stupples, D. W., and Alghaffar, M. A., Pro. Saf. Env. Prot. 2006)
  - Value in Health Journal, « Everything has a cost » (SFSE congress, France, 2017)

## CEDU

## Setting and using the reference value of the man-sievert A synthesis



## **Annexe – Methods for setting alpha value**

#### (1) Human capital

- Estimation of the output that is lost to society on the premature death (based on the GNP/inhabitants and/or cost of workers)
  - This is purely economic, and contain no allowance for other costs (e.g. cost to be spend due to the cancer) and subjective value (e.g. pain, suffering etc.)
  - Ex. GNP/inhabitant = 34,300 € (France) ; ICRP risk coefficient 4.2.10<sup>-5</sup> Sv<sup>-1</sup>; number of years lost due to cancer: 16 years (cf. ICRP Publication 103):

34,300 × 4.2.10<sup>-5</sup> ×16 = 23 €/H.mSv

- This is a minimum; can be increased with *aversion*:  $\alpha(d) = \alpha_0 \times (d/d0)^a$ , a = 1.5
- (2) Implied or revealed preference
- Retrospective analysis of decisions of protection that have been implemented and how much has been spent to reduce the risk
  - To deduce an implicit socially-acceptable value of life
  - But very specific to the risk, population, decision-maker, ground of decision etc.

### **Annexe – Methods for setting alpha value**

(3) Willingness to pay

CEDU

- How much are individuals willing to pay to avoid a given amount of risk?
- Determined by tailored survey + (meta-)analysis
- An overall approach, considered the most theoretically sounded, to evaluate the "Statistical Value of Human Life"
- Ex. 3.14 M€ in France (Quinet, 2013);
   3M€ on average in OECD countries (OECD, 2012); 9M\$ for US NRC etc.

