Polaris Gamma-Ray Imaging Spectrometers for Nuclear Power Plants

Zhong He

Acknowledgements: Dept. of Defense, Dept. of Energy and DHS

What Can 3-Dimensional Position-Sensitive CdZnTe Detectors Offer?

- (1) Can provide near HPGe energy resolution at room temperatures
 - (a) No cryogenic cooling \rightarrow Instant turn on/off + lower power
 - (b) Accurate isotopic characterization + significantly higher sensitivity

(2) Real-time isotopic gamma imaging in the entire $4-\pi$ field of view

(3) Simultaneous gamma & neutron imaging (current research at UM)

All-events (no selection)

Compton gamma imaging

Each UM Polaris/Orion system has eighteen 2×2×1.5 cm³ CdZnTe detectors (108 cm³, 648 grams = 1.43 lb)

Number of photons: 2033

Polaris 1.1 (GMI ASIC) – August 2010

A Polaris System for DOD

Gamma Imaging Capability

Energy Range of Compton Imaging

Polaris-H performs Compton imaging for γ -rays with $E \ge 250 \text{ keV}$

Principle of a <u>low-energy</u> gamma camera (< 250 keV)

Note: Identity of isotopes is determined by γ -ray spectroscopy

Coded Aperture Imaging at $E \le 250 \text{ keV}$

<u>**Principle</u>**: Recognize unique mask shadows from different incident gamma-ray angles</u>

Real-Time Combined Coded Aperture and Compton Imaging

Principle of Compton Imaging for higher energy (> 250 keV, ¹³⁷Cs, ⁵⁸Co, ⁶⁰Co) γ-rays

Object

Forming-dimensional

spectrometer spectrometer

Advanced Capabilities

Example 1 3-Dimensional Imaging ↓ **3-D Dose Mapping in Plants**

3D Imaging with a Moving Detector Experiment Lab Bench × У↓ Desk Wall Lab Bench * * Desk **#** Cs-137 (30 µCi)

[•] Na-22 (30 µCi)

Azimuthal Angle (Degrees)

17

Azimuthal Angle (Degrees)

18

Advanced Capabilities

Example 2

Detect & Characterize Shielded Sources (DOE Black-Box Project)

Detect & Characterize Shielded Sources

Today and Tomorrow

Applications

- National security, homeland security and international nuclear non-proliferation
- Nuclear power (dose reduction and <u>diagnostic</u> inspection)
- Medical imaging (proton cancer therapy)
- Planetary science, astrophysics and fundamental physics (NSF & NASA)
- Safeguard (IAEA workshop in Oct., 2015)
- Environmental monitoring (Gamma + SLAM)

Univ. of Michigan 3-D CZT Technology Licensed to H3D, Inc.

Dr. Brian Kitchen

Locating Unknown Source

Image known hot spot (red box).

Cs-137 image primarily hot in expected direction.

Co-60 image shows another previously unknown source near floor.

Co-58 primarily near floor.

2.5 minutes, ~4 mR/hr

Sky-Shine with Polaris-H

• Imaging 511-keV line from pair production, can image sky-shine outside of reactor building.

Acknowledgement:

Collaborators and customers in nuclear power community who have been **explorers** of this technology

Today:

Making our nuclear plants safer by understanding **unknowns**

Tomorrow?

Detect and recognize accidents **before** they **happen**!