

Application of Hi–F Coat for Recontamination Reduction at Shimane Unit 1

Hitachi-GE Nuclear Energy, Ltd.

M. Nagase, N. Usui, S. Oouchi

Energy & Environmental Research Laboratory, Hitachi, Ltd.

H. Hosokawa

Chugoku Electric Power Company, Ltd.

H. Kajitani, A. Yamashita, T. Minami

Background

- Dose rate reduction effects don't last long after operation.
- Recontamination reduction is needed to keep low dose rate.

What is Hi-F Coat

		Film of Hi-F Coat	Oxide film in plants
Chemical form	Outer	Fe ₃ O ₄	Fe ₃ O ₄ 、 Fe ₂ O ₃ 、 Ni (Co)Fe ₂ O ₄
	Inner	_	CoCr ₂ O ₄ 、Cr ₂ O ₃
Size of particle		<0.2 μ m	1~10 µ m
Thickness of film		$<$ 0.5 μ m	$3\sim$ 10 μ m
Temperature		90°C	280°C

Principal of recontamination reduction

Formation of fine outer magnetite film before power operation

⇒Reduction of inner oxide film formation to pick up Co

Hi-F Coat : <u>Hi</u>tachi <u>Ferrite</u> <u>Coating</u>

Section photograph of film

Formation of fine magnetite film (thickness: $\sim 0.3 \,\mu$ m)

Film formed under NWC 200h (DO: 300 ppb)

Film of Hi-F Caot

Reduction effect of activity deposition (laboratory data)

- Remarkable reduction of ⁶⁰Co deposition under HWC
- Continuous effect after 6 times of heat and cool(Stable)

Outline of treatment procedure

Outline of Hi-F Coat treatment equipments

Only a little equipments are needed to decontamination equipments.

Outline of Hi-F Coat treatment chemicals

Only iron formate is added to HOP method chemicals.

	Chemical	Conc. (ppm)	Remarks
HOP decon.	KMnO ₄	200~300	For oxidation
	(COOH) ₂	2000	For reduction
	N_2H_4	~600	For pH control
	H ₂ O ₂	1	For decomposition of chemicals
Hi-F Coat treatment process	Fe(HCOO) ₂	Fe: ~ 250 Formic ion: ~ 500	Raw material for film formation Formic acid is used for LOMI* process.
	H ₂ O ₂	_	For ion value control
	N_2H_4	200~500	For pH control

*: LOMI is one of chemical decontamination method.

Target of HOP decontamination & Hi-F Coat

Hi-F Coat treatment conditions

Parameter	Planned value	Measured value
Fe conc.	250±50 ppm	263~296 ppm
N ₂ H ₄ conc. 200~600 ppm		160~560 ppm

Hi-F Coat treatment results

Hi-F Coat treatment results

More than target value of 0.1 μ m (60 μ g/cm²) was achieved.

Sample item	Application	Sample No.	Deposited amount (µg/cm²)
	1 st time	1	230
Test piece		2	270
	2 nd time	3	302
		4	192
	3 rd time	5	125
		6	132
	4 th time	7	402
		8	498
Temporary	2 nd time	А	150
piping	4 th time	В	359

Surface observation (SEM)

	Before Hi-F Coat (After decon.)	After Hi-F Coat
×1000	AccV Mag 15.0 kV × 1000	-As5V! (Asg. ├────────────────────────────────────
×10000	AccV Meg	AccV Mag

Dose rate of PLR piping (1/2)

Dose rate of PLR piping (2/2)

Effect of dose rate reduction (1/4)

Point 1: inlet piping

Effect of dose rate reduction (2/4)

Point 2: inlet piping

Effect of dose rate reduction (3/4)

Point 3: outlet piping

Effect of dose rate reduction (4/4)

Point 4: outlet piping

Effect on chemical decontamination

Hi-F Coat film was easy to be removed by chemical decontamination.

Effect of Zn injection on Hi-F Coat

Farther Co deposition reduction can be expected with Zn injection.

Time: 500h Temp.: 280°C ECP: -0.5V

Hitachi laboratory data

Summary

- 1. Hi-F Coat was first applied to Shimane Unit 1 after chemical decontamination.
- 2. Hi-F Coat treatment was successfully applied to the decontaminated surface. Deposited amount of film was about 270 μg/cm² which was more than target value of 60 μg/cm².
- 3. Recontamination was suppressed about 1/2 to 1/3 after one operation cycle.
- 4. Coated film was easy to be removed by chemical decontamination.
- 5. Farther dose rate reduction can be expected with Zn injection.