KHNP Dose Reduction #### Contents - I. Overview of KHNP - II. Regulatory Framework in Korea - III. KHNP Phased Dose Reduction Plan - IV. CRE Reduction Achieved - V. Path Forward # **Overview of KHNP** - Korea Hydro & Nuclear Power Co., Ltd - #### **KHNP** [As of Dec. 2013] - The Largest Power Company Owned by the Government - ❖ No. of Employees: 9,587 - Installed Capacity: 29.9%(26GW) of the national installed capacity (86.9GW) - ✓ all the nuclear power (23.8%) - Electricity Generation: 28.2%(145TWh) of the total national electricity generation(515.2TWh) - ✓ Nuclear : 26.9% - **❖** Revenue in 2013 : **B\$** 6.09 #### Map of Nuclear Power Plants in Korea # Regulatory Framework In Korea ### **Organization** #### **Basic Regulations** #### Radiation Protection - Basis: ICRP60, IAEA Safety Standards Series No. RS-G-1.1 - Dose limits - ✓ Occupational dose limits: 20 mSv/y - ✓ Public dose limits: 1 mSv/y # KHNP Phased Dose Reduction Plan #### **Background of Dose Reduction** #### Initial Background In Preparation for Codification of ICRP60(1990) into the Korean Regulation ``` ✓ Annual Dose Limit : 5 rem/y → 2 rem/y ``` #### Status of CRE in 1990 - 210 man-rem/unit year(PWR) - ✓ World average: 176 man-rem/unit year - No of workers with 2 rem/y + : 1~2% #### Continuous Driving Force - Annual evaluation of KHNP and the CEO based on CRE performance by the government - Increase in Dose Rate of the Primary System - Increase in Maintenance Works for Safer Operation # 1st Phase Reduction(1/2) **◆ CRE Goal : 190** → **120** man·rem/unit year (1992~2000) | Category | Reduction Measures | |--|---| | Operation Procedures & Facility/Equipment Improvements | ■ High pH Operation: pH 6.9-7.4 (Li 0.7-2.2 ppm) | | | ■ Microfiltration of RCS : $5 o 1$ um | | | Removal of RTD Bypass Valves | | | Replacement of the Primary SystemSG tubes with Low Cobalt Alloy Construction | | | Refurbishment of In-Core Instrumentation | | | Automatic Drum Decontamination System | | Automatic/Robotic
Maintenance Tools | New SG ECT Equipment | | | SG Bolts Tension/Detensioners : Manual → Half automatic | | | SG Nozzle Dam/Torque Wrencher | | | Automatic Rx Stud Bolt/Nut/Hole Cleaners | | | Improvement of Rx Cono-Seal Tensioner | # 1st Phase Reduction(2/2) | Category | Reduction Measures | |------------------------------|---| | Radiation
Work Management | Active Implementation of ALARA Program | | | Modification of High Radiation Work Procedures | | | Development of Temporary High RadiationWork Procedures | | | Penalty on Work Procedure Violators | | | RP Contracts(during On Line) Made | | Employee Training | Qualification of RP Contractors | | | Encouragement of CHP for RP Department | | | Launching of Advanced RP Training Courses | # 2nd Phase Reduction(1/2) ♦ CRE Goal: $90 \rightarrow 75 \text{ man} \cdot \text{rem/unit year}$ (2001~2010) | Category | Reduction Measures | |--|--| | Source Term
Reduction | Chemical Decontamination on the Primary System | | | Optimization of Shutdown Chemistry | | | Installation of The Tritium Removal System | | | Minimization of Corrosion Products | | Improvement
of Facility
Maintenance
Equipment | Removal of the RTD Bypass Pipes | | | Installation of the One piece Rx Head Assembly | | | ■ Improvement of the In-core Thermocouple System | | | Improvement of the Out Core Instrumentation | | | Modification of SG Nozzle Dam Bolts → Air Expansion | ### 2nd Phase Reduction(2/2) | Category | Reduction Measures | |-------------------------------------|---| | Operation and Administration System | Improvement of the Internal Exposure Evaluation Program | | | Adoption of ALARA Review System During Construction | | | ■ Best ALARA Awards | | | Replacement of Old Radiation Measuring Equipment | ## 3rd Phase Reduction ♦ CRE Goal: $61 \rightarrow 49 \text{ man} \cdot \text{rem/unit year}$ (2008~2016) | Category | Reduction Measures | |------------------------------------|---| | Radiation Safety Management System | Self-Assessment on RP | | | Operation of the Peer Group | | | Performance Indicator of RP | | | Improvement of the Basic Radiation | | | Workers' Training Program | | Source Term
Reduction | Zn Injection | | | Ultra Sonic Fuel Cleaning | | | Standard Guideline for Shutdown Chemistry | | Facility
/Equipment | Installation of the Permanent | | | Rx Cavity Sealing | | | Simplification of the Rx Upper Assembly | | Outage
Management | Adoption of Recommendation by Consulting on
the RP system during Outage | | | Operation of the Outage Control Center | | | Daily Dose Performance Indicator | | | Remote Monitoring system at High Radiation Area | #### **Case of Best Source Term Reduction** #### **Zinc Application** - Dose Reduction Achieved at Hanul 1 - : 44.4 % (RCS Loop & S/G Channel Head) - Zinc injection at all KHNP PWRs (15 units) by 2016 Zinc Injection Skid Survey Points at Hanul #1 #### **Case of Best Improvements** #### **Advanced Remote Radiation Monitoring System** - Real-time Remote Radiation Monitoring at HP Office - User-Friendly - ✓ Wireless Communication Equipped - ✓ Compact size : 60 % Smaller (335 cm 3 \rightarrow 114 cm 3), 30 % Lighter - Performance Demonstration carried out at Hanbit NPP - President's Prize Awarded at the National Quality Competition # **CRE Reduction Achieved** ### **Historical CRE Trend** ### Introspection # There is no royal road to CRE reduction but collaborative and continuous efforts with management commitment are essential. # **Path Forward** #### 4th Dose Reduction Plan(1/3) #### 1. Assessment of the Current Status ◆ CRE Reduction Study Jointly with EPRI in 2013 (As ALARA Supplemental Program) #### **♦** Strength - Good Dose Minimization Process(Zn Injection, Fine Filtration, etc) - Effective Cleanup of Reactor Coolant During Shutdown - Good Morning Meeting to Keep Supervisions' Attention - Excellence in Disseminating Plant Experiences to Other Plants - Use of Actual Wrench Time for the Dose Estimate - Higher Level of Headquarters Support and Involvement #### 4th Dose Reduction Plan(2/3) #### **◆** Recommendations - > ALARA Program and Implementation - Reduce ALARA Committee Review Criteria : 200 → 50 man · mSv - > ALARA Culture - Enhancing Communication with Workers(Daily Dose Reports) - > Hardware and Equipment Improvements - Expansion of RMT, Electronic Survey System with EPDs - Temporary Shields(Reactor Head, Waste Sorting Area Shield) - Rx Cavity Purification System #### 4th Dose Reduction Plan(3/3) - 2. Benchmarking of US Plants with EPRI - **♦** Benchmarking Visit to Palo Verde, Catawa, Farley - **◆** August 15 ~ August 22, 2014 - ◆ 2 KHNP Staff, 2 EPRI staff - 3. Internal Workshop on Dose Reduction - 4. Finalizing the Plan for CEO's Approval - Goal: WANO Top Quartile