

Achievement of Lowest PWR Dose at Cook Nuclear Plant

Presented by: Bob Hite, Radiation Protection Manager Cook Nuclear Plant American Electric Power September 24-25, 2012 Asian ISOE ALARA Symposium Tokyo, Japan

Presentation Outline

- Success Approach
 - What the DC Cook DID to Achieve Such Success?
- Duplicating Success
 - Benchmark and Mimic What DC Cook Implemented
 - Remove Biases and Obstacles with Data
- Brief Highlights of Results for DC Cook
 - Co-58/60 Peaks
 - SG Dose Rates
 - Particle Isotopic Mix

NRC 2010 PWR Quartile Improvement -44% Three CRE

- 1st Quartile
- Improving Every Period

2010 PWR Quartile Data

	Plant Name	Three-Year Coll. TEDE per Reactor Year 2008-2010	Percent Change From 2007-2009	2007-2009 Quartile (if changed)
	INDIAN POINT 3	25.049	-57% 🔻	2
	COOK 1,2	33.291	-44% 🔻	2
	FARLEY 1,2	34.000	-8% 🔻	
<u>e</u>	SUMMER 1	35.757	-1% 🔻	
Quartile	CALLAWAY 1	36.431	-12% 🔻	
ă	PRAIRIE ISLAND 1,2	39.208	26% 🔺	
lst	PALO VERDE 1,2,3	41.159	-9% 🔻	
-	HARRIS	44.778	15% 🔺	

		VANO Ranking of CRE By Design: Loop, > 1000 Mwe, Westinghouse Framatone						
ank	UNITNAME	COUNTRY	MWe RATING	First Commercial Operation DATE	Nominal Operating Cycle Months	3-Yr CRE (Man- Sieverts)	3-Yr CRE [REM]	
1	Cook Unit 2	USA	1133	07/02/82	18	0.28	27.80	
2	Golfech 1	France	1345	01/02/95	18	0.29	29.47	
3	Golfech 2	France	1345	03/02/98	18	0.31	31.17	
4	Catawba Unit 1	USA	1153	06/30/89	18	0.32	31.60	
5	Civaux 2	France	1495	09/02/06	24	0.35	34.66	
6	Cook Unit 1	USA	1056	08/24/79	18	0.35	35.30	
7	Saint-Alban 2	France	1335	03/02/91	18	0.35	35.40	
8	Paluel 4	France	1330	06/02/90	18	0.35	35.43	

- DC Cook Outages:
 - RWP- hrs. are 20,000 to 25,000 hours
- Ice Condenser Containment:
 - 1/3 Smaller
 - More like a BWR Drywell

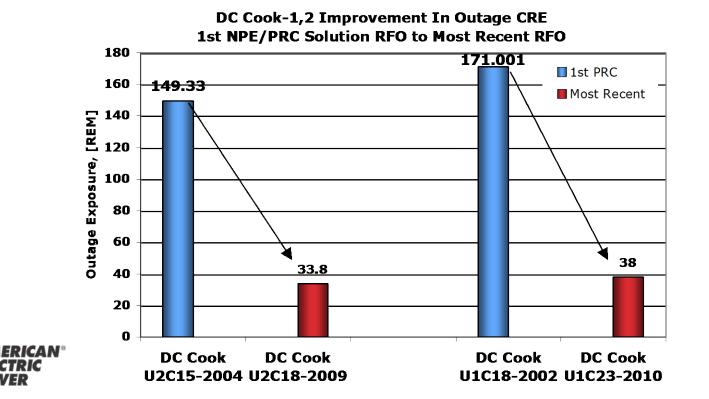
Ra

Success Started This Way... And Sustained Commitment...

- Start at the Top- Senior Leadership Team
 - Must be First Communication
 - Management Commitment to Change Process
- Benchmarked and Exactly Replicated Successful Solution
 - Key: Replicate what worked
- Engaged a Collaborative Team Process
 - Outage Management, Operations, Radiation Protection and Chemistry
 - Challenge to Overcome Industry Chemists Objections
 - Requirements to Protect Intellectual Property & Technology Innovation
 - Prevents Detailed Disclosure of "How" Technology Works
 - Decision must be on Safety and Performance Data
- Senior Executive Leadership Team Made Decision to Implement
 - RP In Lead Role- Very Important (We own Performance Metrics)
 - Operations, Chemistry and Outage Management Interfaces Required

Prerequisites for Low Dose Outages

- Leadership Team and Organizational Accountability
 - Must be committed to holding entire organization accountable for results
- Good ALARA Program
 - Not all plant exposure is from transport, deposition of colloids
 - Work Management is also important
- Reactor Coolant Cycle Chemistry
 - Must Be Monitored And Maintained to EPRI Guidelines
- Foreign Material Exclusion Program Must Be Excellent
 - Perfection Is The Goal!!!
- Clean-Up Systems MUST BE MAINTAINED in Top Condition
 - Equipment MUST be maintained, tested and in top condition PRIOR to outages



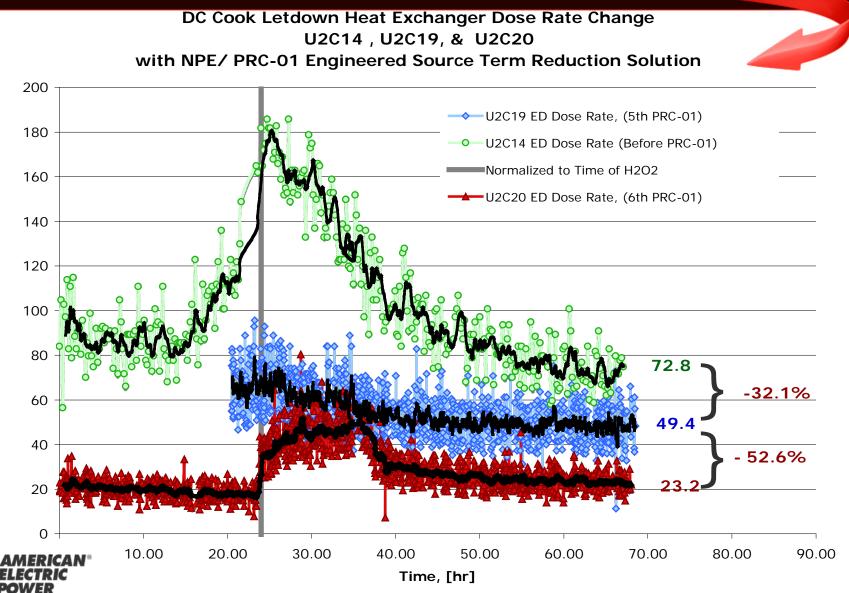
DC Cook-1,2 Most Recent Refueling Outage Collective Radiation Exposure

- DC Cook-1,2
 - 2C18: 33.8 REM US Record 4 Loop IC Low Dose
 - 1C23: 37.0 REM 35 day

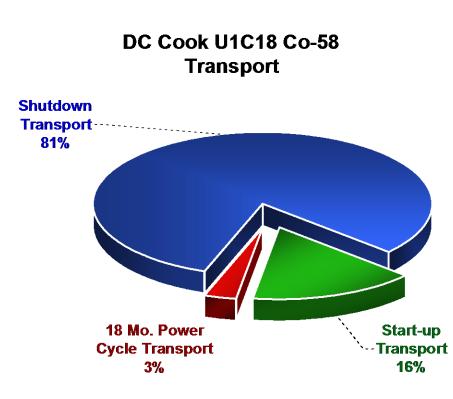
• 5 Year ALARA Plan- 2010-2015

- Goal: 15 to 25 REM, 30 day RFOs

Key to Success - Benchmark +++ Understand Differences, Implement What Worked


Benchmarked Other Stations for Cost Effective Solution

- VC Summer, Turkey Point 3,4
- What did and didn't they do that was Different?
- Did not use:
 - Zinc Injection
 - Ortho-macroporous resin
 - Fuel Cleaning or Decontamination Technologies
 - Did Not have RTD Lines around Steam Generators
- Did Use:
 - Revised Shutdown and Start-Up Protocol from Technology Supplier
 - Use PRC-01M Media in CVCS and SFP
 - Sustained Both Protocol and PRC-01M for 4 Refueling Outages
- Cook Started a Program to Duplicate What Other Successful Plants Did in Every Detail



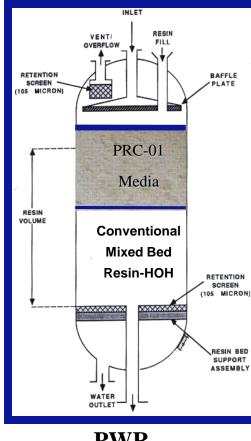
Effective Source Term Results Achieved Through Implemented Proprietary 2 Part Engineered

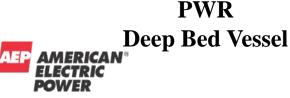
Solution

Opportunity for Source Term Mitigation Shutdown and Start-Up !

• What?

- Remove All Transporting CRUD
- Not just Co-58 and Co-60
- Colloids, Iron, Nickel
- When?
 - 81% of Transport Occurs at Shutdown
 - Must Focus on Shutdown
 - ALSO !!! Focus on Start-Up
- How?
 - Engineered Solution
 - Control Shutdown
 - Preventing Plate-Out
 - PRC-01 Media Technology in Shutdown Demineralizer (this is an important engineered solution)

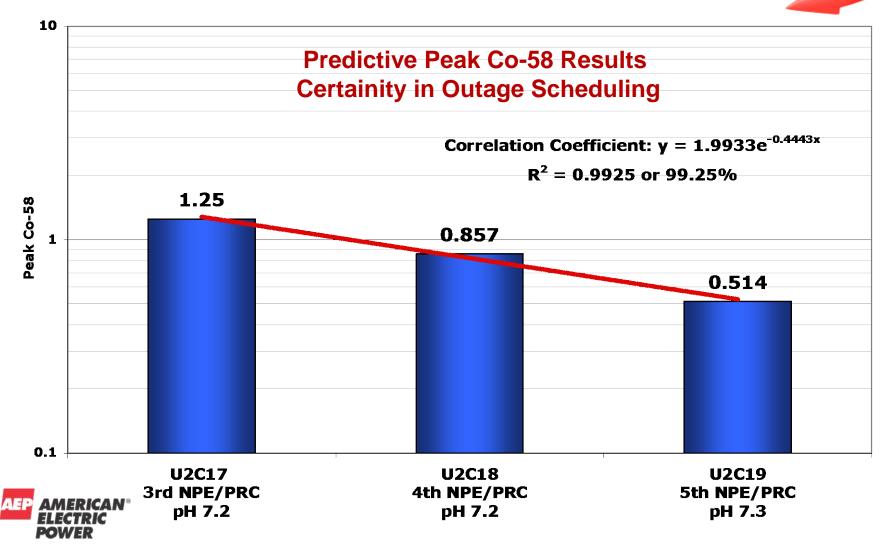



Eliminating Confusion: Assessing PRC-01 Technology Innovation Shutdown Clean-Up Demineralizer Performance

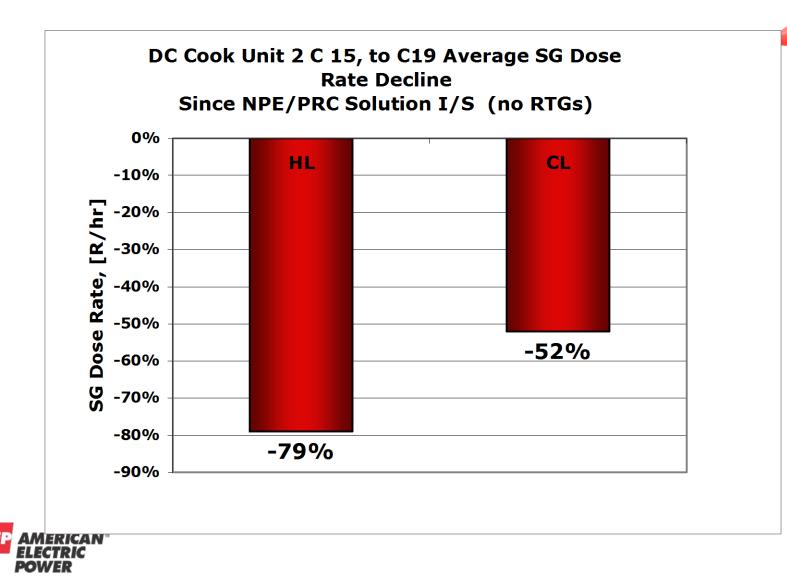
- <u>Before:</u> PRC-01 Resin, DC Cook-2C14
 - Co-58 and Co-60 DFs > 1,000: 99.9 % Efficient
- <u>After:</u> PRC-01 Resin, DC Cook- 2C20, Resin and with Engineered Solution
 - Co-58 and Co-60 DFs > 1,000: 99.9 % Efficient
- After 2 Part Engineered Solution Implemented:
 - Results: System Dose Rates Have Declined: 68%
- CONCLUSION:
 - Cannot Use CVCS Demineralizer Decontamination Factor (DF) as measure of technology innovation success
 - MUST USE RP METRICS dose rates, trend data, Collective Radiation Exposure

Benchmark: Technology Innovation Used Correctly, Key to Success

• Two Part Engineered Solution:


- Shutdown/Start-Up Protocol
- Improved Outage Schedule

• CVCS Clean-Up Systme Changes:

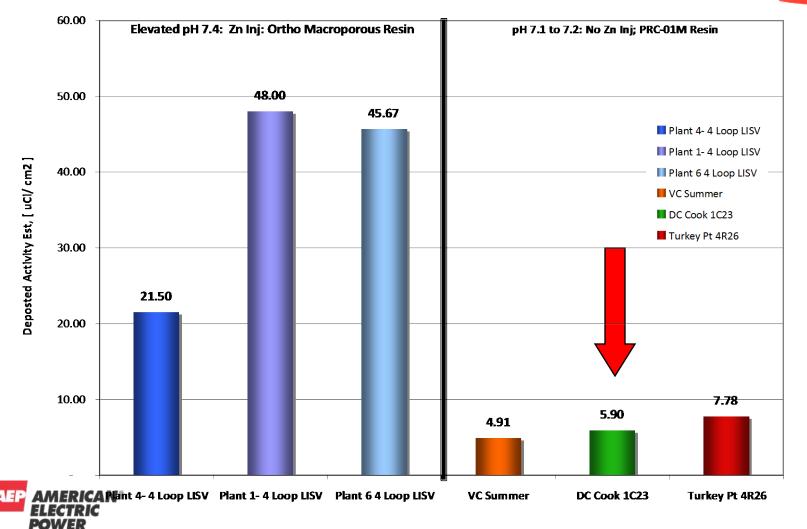

- 1 um RCS Filter Placed In-Service
- PRC-01 Overlay On top of Conventional Resin
- Shutdown Bed Discharged and Re-Loaded for Start-Up
- PRC-01M Spent Fuel Pool

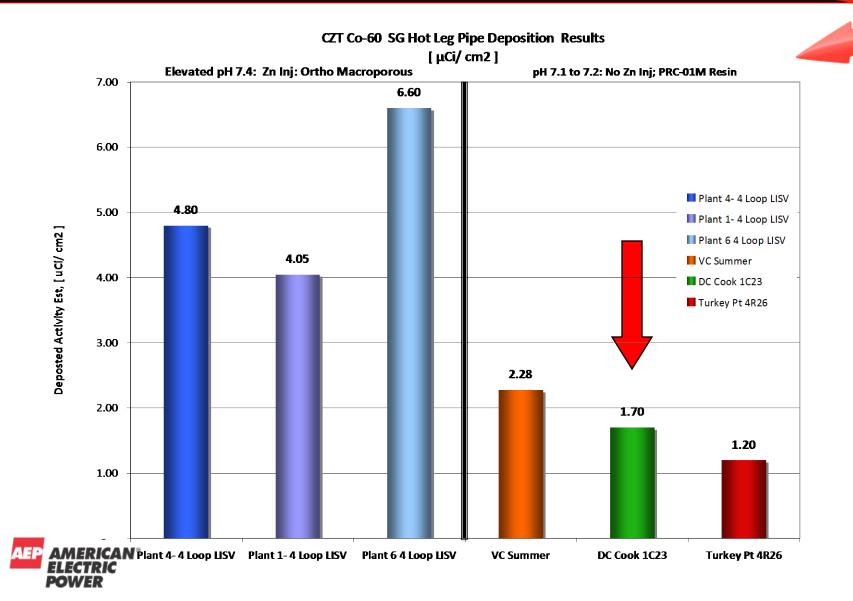
Cook Unit 2: Co-58 Peak Decline with PRC Correlating Coefficient: 99.25%

DC Cook U2C17-C19 Peak Co-58

DC Cook Unit 2 SG Dose Rate Change Between 2C15 and 2C19, 2007 to 2010 (no RTDs)

Using New Tools: What is CZT? Cadmium Zinc Telluride (CZT) Gamma Spectroscopy


- New Gamma Spectroscopy Technology very important when mix is changing
 - Identifies Isotopes in Energies between 100 keV to 1800 keV
 - Isotopes identified:
 - Co-58, Co-60, Ag-110m, Cs-137, Sb-124 &122, Sn-113Cr-51, Fe-59, Mn-54, Zn-65, Zr/Nb-95
- Small and Lightweight
- Portable
- Cost Effective
- No Cooling Required
- Refueling Outages
 - 2 day Measurement
 - 2 day Analysis
- Also Used On-line



CZT Results - Benchmarks Co-58 SG Hot Leg Piping Deposited Activity

CZT Co-58 SG Hot Leg Pipe Deposition Results [µCi/ cm2]

CZT Results - Benchmarks Co-60 SG Hot Leg Piping Deposited Activity

How does DC Cook Continue to Improve? Co-60 is Dose Controlling Isotope – but changing???

Shutdown/Start-up Practices

- Solid PZR Ops to Permit Early Peroxide Add, +18 vs +30 Hr
- Live Aggressively to Schedule, Shorter Time with High Activity RCS Less Dose, Work Window Opens
- Change Nothing Else!

ALARA Stays Aggressive

- Resist Temptation to Reduce High Standards of ALARA Program as Dose Rates Continue to Drop (this is important)
- Identify Local Challenge Areas- Involve Experts
- CZT Technology Provides DATA to Guide us to New Opportunities for Improvement

How does DC Cook Continue to Improve? Co-60 is Dose Controlling Isotope - but changing???

Nuclide	Activity [uCi/cc]	Error%
Mn-54	2.65 E-04	25.01
Co-60	3.87 E-02	0.40

How does DC Cook Continue to Improve? Co-60 is Dose Controlling Isotope - but changing???

Nuclide	Activity [uCi/cc]	Error%
Mn-54	2.02 E-04	6.45
Co-58	1.64 E-04	6.88
Co-60	2.42 E-04	4.76
Zr-95	1.83 E-02	0.64
Nb-95	3.80 E-02	0.42
Sn-113	1.21 E-03	4.22
Sb-125	1.98 E-03	6.50

How does DC Cook Continue to Improve? Co-60 is Dose Controlling Isotope - but changing???

- Co-58/60 Historically predominant isotopes in discrete particles
 - This has been changing gradually since PRC-01 resin use and cleanup strategies implemented
- Zr/Nb-95 Becoming More Predominant
 - Co-60 becoming less and less predominant
 - Trending being performed to predict longer-term impact
- Electronic Dosimeter to TLD comparison ratios may be changing
 - Also performing trending on this

What does Future Source Term Look Like?

- Our Future: 5 Yr Plan
 - DC Cook-U1 and U2
 - Near Future: >15 to <25 REM RFO</p>
 - U2C20 40.2 rem
 - ~10 rem for 100% Eddie Current Testing
 - 30.2 for the rest
 - 3-5 rem reduction easily identifiable from U2C20
- Your Future...???
 - "Let Success Do the Thinking"
- The Data/Results Are There, Don't Guess Anymore

What Does Future for Worker Occupational Exposure Look Like?

• Future?

- Continue Current Source Term Reduction Efforts
- Improve Dose Ownership In Entire Plant Organization
- More to come on this...

