

Cook Units 1& 2 Source Term Reduction 4th Quartile to Top Decline for Outage Exposure

Presented by: Bob Hite, RPM Cook Nuclear Plant ISOE/NATC International ALARA Symposium January 11, 2011

Presentation Outline

- Success Approach
- Retrospective
 - What the Team DID to Capture Such Success?
- How Do you Duplicate Success
 - Benchmark and Exactly Mimic What We Did????
 - Removal Biases and Obstacles with Data !!!!!
- Brief Highlights of Results for DC Cook
 - Co-58 Peak
 - SG Dose Rates
- Future sustainability???

NRC 2010 PWR Quartile Improvement -44% Three CRE

- 1st Quartile
- Improving Every Period

2010 PWR Quartile Data					
		Plant Name	Three-Year Coll. TEDE per Reactor Year 2008-2010	Percent Change From 2007-2009	2007-2009 Quartile (if changed)
	st Quartile	INDIAN POINT 3	25.049	-57% 🔻	2
		COOK 1,2	33.291	-44% 🔻	2
		FARLEY 1,2	34.000	-8% 🔻	
		SUMMER 1	35.757	-1% 🔻	
		CALLAWAY 1	36.431	-12% 🔻	
		PRAIRIE ISLAND 1,2	39.208	26% 🔺	
		PALO VERDE 1,2,3	41.159	-9% 🔻	
	Ť	HARRIS	44.778	15% 🔺	

Success Started This Way... And Sustained Commitment...

- Start at the Top- Senior Leadership Team
 - Must be First Communication
 - Management Commitment to Change Process
- Benchmarked and <u>Mimic</u> Successful Solution
 - Exactly well, at least try
- Engaged a Collaborative Team Process
 - AEP DC Cook Los Alamos Scientists (n,p) Energy, Inc.
 - Key Contributors: Bob Heathcote, Dave Kozin, Dave Faulkner, Terry Brown, Carl Moeller, Dave Miller, Joe Beer, Chuck Vanderswag
- Senior Leadership Team Made Decision to Implement
 - RP In Lead Role- Very Important (We own Performance Metrics)
 - Operations and Outage Management Interfaces Required
 - Chemistry Directed to Support Initiative what does this mean??

Prerequisites for Low Dose Outages

- Leadership Team Accountability RP can't be the only bagholder
- Good ALARA Program
 - Not all plant exposure is from transport, deposition of colloids
 - Irradiated components
- Good Enough At Power Chemistry
 - PWRs Chemistry is Good Stable Most All Plants
 - BWRs Chemistry more Complex???, NMC, HWC, DZO, Fe Inj.
- Excellent Foreign Material Exclusion Program micro stuff!!
 - PWRs Most OK, want perfection
 - BWRs Good
- Clean-Up Systems in Good Shape this is important!!!
 - F/D Septa

DC Cook-1,2 Most Recent Refueling Outage Collective Radiation Exposure

- DC Cook-1,2
 - 2C18: 33.8 REM US Record 4 Loop IC Low Dose
 - 1C23: 37.0 REM 35 day
- 5 Year ALARA Plan- 2010-2015
 - Goal: 20 to 25 REM, 30 day RFOs

Key to Success Benchmark +++ Understand Differences, and Implement Exactly Implement What Worked

Benchmarked Other Stations for Cost Effective Solution

- VC Summer, Turkey Point 3,4
- What did and didn't they do that was Different?
 - Did not use Zinc Injection
 - Did not use Ortho-macroporous resin
 - Did Not have RTD Lines
 - Did Not Use Any Fuel Cleaning or Decon
 - Did... Use Good Shutdown and Start-Up Operations
 - Did... Use PRC-01M Resin in CVCS and SFP, Sustained for 4+ cycles
 - Did... Retain External Experts to Optimized Shutdown/Start-Up Protocol
- So Cook Started a Program to Exactly Duplicate What Other Successful Plants did to Every Detail !

Benchmark: Impressive VC Summer Results: Electronic Dosimeters as Process Monitors

Benchmark: Impressive Results VC Summer SG Dose Rateson Co-60 Decay Rate

Benchmark: Results VC Summer Impact of Reducing Core Crud

2003 Highest Power Zone Cycle 14 (grid 6)

3rd RFO with NPE/PRC-01 Solution

2006 Highest Power Zone Cycle 16 (S33)

After 6th RFO with NPE/PRC-01

PO

Benchmark: Technology Used Correctly, Key to Success

- Two Part Engineered Solution:
 - Shutdown/Start-Up Improvements
- Implementation:
 - 1 um RCS Filter Placed I/S
 - PRC-01M Overlay On top of Conventional Resin
 - Shutdown Bed Discharged and Re-Loaded for Start-Up
 - Spent Fuel Pool

Cook Unit 2: Co-58 Peak Decline with NPE/PRC Correlating Coefficient: 99.25%

DC Cook U2C17-C19 Peak Co-58

DC Cook Unit 2 SG Performance Last 3 RFOs, 2007 to 2010 (no RTDs)

Using New Tools: What is CZT? Cadmium Zinc Telluride (CZT) Gamma Spectroscopy

- New Gamma Spectroscopy Technology important when mix is changing
 - Identifies Isotopes in Energies between 100 keV to 1800 keV
 - Isotopes ID for NPP:
 - Co-58, Co-60, Ag-110m, Cs-137, Sb-124 &122, Cr-51, Fe-59, Mn-54, Zn-65
- Small and Lightweight
- Portable
- Cost Effective
- No Cooling Required
- Refueling Outages
 - 2 day Measurement
 - 2 day Analysis

CZT Results - Benchmarks Co-58 SG Hot Leg Piping Deposited Activity

CZT Results - Benchmarks Co-60 SG Hot Leg Piping Deposited Activity

How do we Continue to Improve? Co-60 Controls Dose Now

- Shutdown/ Start-up Practices
 - Solid PZR Ops to Permit Early Peroxide Add, +18 vs +30 Hr
 - Stability to Schedule, Shorter Time with High Activity RCS Less Dose, Work Window Opens
 - Change Nothing Else!
- ALARA Stays Aggressive
 - Resist Temptation to Reduce High Standards of ALARA Program as Dose Rates Continue to Drop
 - Identify Local Challenge Areas- Involve Experts
 - CZT Technology Provides DATA to Guide us to New Opportunities for Improvement

What does Future Source Term Look Like?

- Co-58 Peaks will continue Decline
- SG Dose Rates will continue decline
 - Co-60 Decay Rate
- General Area Dose rates will Decline
 - 25% to 35% in Stainless Steel RCS
- Opportunity
 - Faster Outage
 - US Low Dose Record RFO at Cook
 - World Record Low dose at within Grasp by 2015
 - (Depending on Work Scope)
- 5 Yr Plan-
 - DC Cook-U1 and U2
 - Near Future: > 15 to <25 REM RFO</p>

Questions?

