HANUL Unit4 Steam Generator Replacement

Radiation Safety Management

CONTENTS

2

3

4

Summary

Radiation safety management

Radioactive waste management

1. SUMMARY

Condition

- HANUL Unit 4
 - > business operated day : 31, December, 1999
 - > type : PWR(pressurized-water reactor)
 - reactor shutdown day : 9th, September, 2011
- Replacement Subject : two steam generators
 - reason : excess of acceptance rate of steam generator tube plugging
 - ➤ period of replacement : 2013. 5.10 ~ 8.14(97D)

Work Item	MAY			JUNE				JULY				AUGUST			
		3	4	5	1	2	3	4	1	2	3	4	5	1	2
Preparation work(22d)	C —				5.10)~5.3	1								
• bringing equipment into RCB	c— 3	5.10	~ 5.12												
 installation of refueling pool cover 	c	- 5.1	2~5.1	3											
• cutting pipes of MS & FW		c		• 5.1	6 ~ 5.2	7									
 installation of SG lifting equipment(HLU/TLD) 				~~	5.28	~ 5.31									
SG replacement work(37d)					C							6 .07 ~ '	7.12		
 cutting RCS pipes 					c		- • e	 5.07 ~ 6	.09		(RCS Critical Windov		ow)		
 taking out OSG from RCB 						c0	6.09 ~	6.11							
 decontamination of RCS end pipes and processing cutting plane 								- 6.	 07~ 6.1 	 .6 					
bringing RSG into RCB and Fit-up									6.12	~ 6.18					
• welding and NDE of RCS pipes								C =) (6.19 ~ 7 	.12			
Successive work & start-up(29d)								7.1	L2 ~ 8.0)9 🗘					
• SG ECT										•		- 7	7.12 ~ 7	.24	
 refueling operation 											c —	• 7.1	8 ~ 7.2	1	
• making a trial run										7	.26 ~ 8.	 .06 🚥			•
synchronization & connection															8.14

1) Woker exposure dose management

management goal

- collective dose
 - ≽ goal : 210 man-mSv, result : 177 man-mSv
- individual dose : 16 mSv/yr
 - > unavoidable case of excess exposure: 20 mSv/yr
 - > legal requirement : 50 mSv/yr, 100 mSv/5year

\bigcirc Exposure dose of the major work

NO	Major work	goal	result
1	RCS pipes cutting, grinding, welding	120	106.6
2	RCS pipes clamping, supporting	15	14
3	RCS pipes inside decontaminating	10	7.6
4	SG support fixture, platform removal and installation	7	4.9
5	Shielding materials installation and removal	7	3.9
6	Heat insulation materials of SG, RCS pipes removal and installation	3	4.4
7	others	48	36.3
	210	177.7	

2) Method of reducing exposure radiation dose for worker

- delay the draining of SG primary and secondary coolant
- conducting pre-mock up training for major radiation work
- radiation shielding : installation of temporary lead shielding materials for RCS pipes and lead shielding structure for OSG
- installation of the movable air cleaning unit
- monitoring continually the air contamination level(movable continuous air contamination monitor)
- decontamination of the inside of RCS end pipes
- measurement of radiation and radioactivity for a day, of work

○ Conducting pre-mock up training for major radiation tasks

○ Conducting pre-mock up training for major radiation tasks

○ Conducting pre-mock up training for major radiation tasks

- SG weight : 546 ton, total weight : 637 ton(included saddle, lashing)
- Mock up weight : 730 ton

○ Radiation shielding(pipes and object)

○ Radiation dose rate after shielding (mSv/h)

location	Installation place	mSv/h			
location	installation place	before	after		
	Reactor drain pipe	0.2	0.08		
RCB 80	Refueling Pool drain pipe	12.5	5.5		
RCB 100'	SG hot leg pipe	0.5	0.2		
	SG cold leg pipe	0.25	0.15		
	RTD pipe	0.25	0.1		
RCB 116'	SG H/L→PZR Surge Line	0.15	0.08		

* total quantity needed of lead material : 1,150 sheets

○ Radiation shielding(SG lead shielding structure)

SG transportation terms

- outside surface of transporting object : 2 mSv/h
- outside surface of transporting vehicle from 2m : 0.1 mSv/h
- surface contamination : below surface contamination control limits
 - ➤ surface contamination control limits : 4 Bq/cm²

Measured value

- outside surface of transport object : 3.1 uSv/h
- outside surface of transport vehicle from 2m
 - : 2.84 uSv/h(→0.44 uSv/h)
- surface contamination : natural background radiation level

○ Installation of the movable air cleaning unit

capacity : 2,000cfm, 750cfm, 560cfm

\bigcirc Monitoring continually air contamination

Continual air monitor

○ Pipe end decontamination(PED) of RCS

4. RADIOACTIVE WASTE MANAGEMENT

○ Generated amount of radioactive waste

unit : kg

type	iron	cotton	paper	vinyl	plastic	rubber	insulation
amount	9,416	1,094	937	1,543	163	1,073	2,100

\bigcirc Method of reducing radioactive waste

🖲 iron

≻ high level contamination : storage of 200 ℓ drum

> low level contamination : disposal after long term storage

rest of radioactive waste : storage of 200 l drum

