

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A

Luis SEMPERE BELDA AREVA Chemistry Services

Contact: luis.sempere-belda@areva.com

Co-Authoring: S. Reymann, J.P. Moreira do Amaral, R. Neuhaus, A. Basu

ISOE Bern, April 9th, 2014

Content

The Chooz A dismantlement project

- Chemical decontamination of Chooz A
 - Process selection
 - Process description
 - Decon equipment
 - Implementation (Pictures)
- Results obtained
 - Corrosion products and activity removed
 - Dose rate measurements before/after
 - Radwaste generated (type & amount)
 - Project timeline
 - Objective accomplished (Pictures)
- Lessons learned and recommendations
- Short summary

The Chooz A dismantlement project: Pioneering D&D in France

- First PWR built in France (1963)
- Located near the Belgian border in the French Ardennes
- 4 Loops Westinghouse reactor
- Power output 305 MWe
- Final shutdown in 1993
- Since then in Safe Enclosure (SAFSTOR)
- Dismantling decree: Sept. 2007

Decontamination objective & process selection

- Decontamination activities as decisive work package of dismantlement project
- Large components to be re-classified as VLLW after decon (fr. TFA, < 100 Bq/g)</p>
- Chemical decon selected for the treatment
 - High effectivity
 - Low radiation exposure of involved personnel
 - Low risk of uncontrolled spreading of contamination

Content

- Process description
- Decon equipment
- Implementation (Pictures)
- Results obtained
 - Corrosion products and activity removed
 - Dose rate measurements before/after
 - Radwaste generated (type & amount)
 - Project timeline
 - Objective accomplished (Pictures)
- Lessons learned and recommendations
- Short summary

Process adapted to specific needs of Chooz A

Plant with singular characteristics and operating history

Material concept, water chemistry

Treatment process was adapted and optimized to account for this:

Concept validation on plant coupons in hot lab

Process specifically adapted to suit plant's needs

- Chemistry: Non-standard oxide characteristics
- Complete removal of contaminated oxide layer (15 µm)
- Removal of outer layer of base material (9 µm, safety margin defined by EdF)

CORD UV and CORD D chosen for guaranteed success

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A-Luis SEMPERE BELDA - ISOE2014 Bern, April 9th - AREVA GmbH Proprietary - © AREVA - AL: N - ECCN: N - p.8

All rights are reserved, see liability notice.

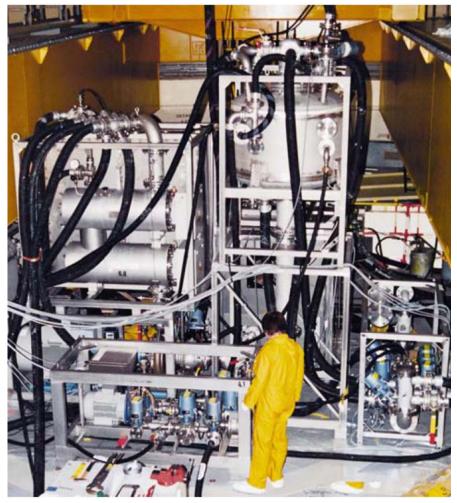
forward-looking energy

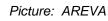
HP CORD UV for oxide removal

- Established method of standard use for power plants in operation
- Uses very low concentrations (max. ~0,2% solution in water) of comparatively mild chemicals
 - Permanganic acid
 - Oxalic acid
 - Hydrogen peroxide
- UV-Decomposition of chemicals minimizes amount radwaste generated
- Dissolved activity fixed on solid matrix (ion exchangers) for much easier handling and less risk than radioactive solutions
- Process water is purified at the end of the process, only one system fill required

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A-Luis SEMPERE BELDA - ISOE2014 Bern, April 9th - AREVA GmbH Proprietary - © AREVA - AL: N - ECCN: N - p.9

CORD D for controlled base metal removal


- Controlled base metal removal of superficial layers of base metal
- Uniform removal with submicrometer precision
- Metastable process induced by intense UV radiation: Chemical process stops automatically in case of equipment failure
- No strong or highly toxic mineral acids employed, only oxalic acid
- Same waste minimization advantage as CORD UV
- Exactly the same process control parameters required, no different procedures for plant personnel



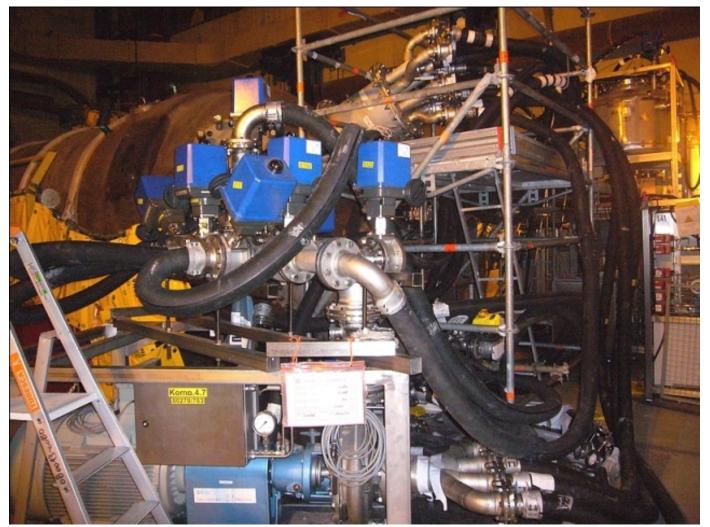
AREVA's decontamination equipment AMDA

- Complements and completes decontamination circuit
- Modular design
 - Provides <u>all</u> required components
 - Provides <u>only</u> required components
 - Flexible installation, even with limited space
- Injection of chemicals
- Pumps
- Heaters
- Sampling
- UV reactors
- Ion Exchangers
- Process Control

Highly automatized & remote controlled for dose minimization

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A-Luis SEMPERE BELDA - ISOE2014 Bern, April 9th - AREVA GmbH Proprietary - © AREVA - AL: N - ECCN: N - p.11

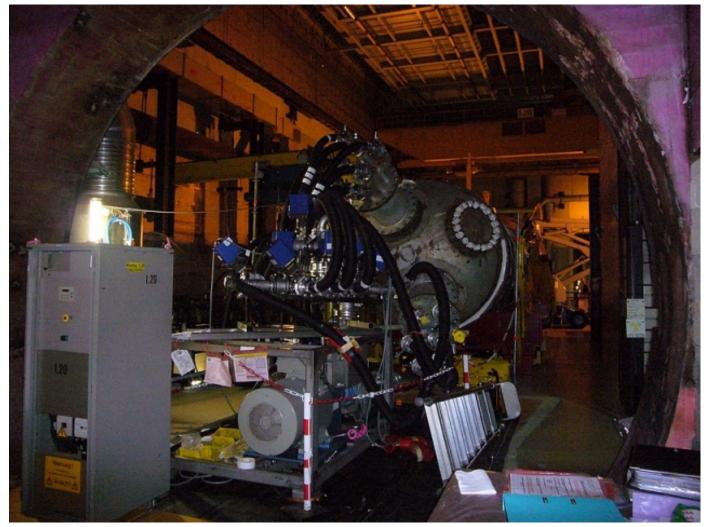
Remote process control with AREVA AMDA ensures ALARA



Picture: AREVA & EdF

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A-Luis SEMPERE BELDA - ISOE2014 Bern, April 9th - AREVA GmbH Proprietary - © AREVA - AL: N - ECCN: N - p.12

Decontamination circuit with AREVA's AMDA connected to SG (1/2)



Picture: AREVA & EdF

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A-Luis SEMPERE BELDA - ISOE2014 Bern, April 9th - AREVA GmbH Proprietary - © AREVA - AL: N - ECCN: N - p.13

Decontamination circuit with AREVA's AMDA connected to SG (2/2)

Picture: AREVA & EdF

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A-Luis SEMPERE BELDA - ISOE2014 Bern, April 9th - AREVA GmbH Proprietary - © AREVA - AL: N - ECCN: N - p.14

Content

- The Chooz A dismantlement project
- Chemical decontamination of Chooz A
 - Process selection
 - Process description
 - Decon equipment
 - Implementation (Pictures)

Results obtained

- Corrosion products and activity removed
- Dose rate measurements before/after
- Radwaste generated (type & amount)
- Project timeline
- Objective accomplished (Pictures)
- Lessons learned and recommendations
- Short summary

Amounts of contaminated corrosion products and activity removed

Including metal amounts from base metal removal, per component

	Fe (kg)	Cr (kg)	Ni (kg)	Activity (Bq)
SG2	93,1	37,3	16,7	4,02E+11
SG1	118,8	50,9	25,2	4,72E+11
SG3	103,7	34,2	19,3	4,23E+11
SG4	96,2	39,3	17,4	3,84E+11
Loop 3&4	11,8	5,5	2,1	1,79E+10
Loop 1&2	11,5	4,9	1,6	1,45E+10
PZR	15,8	9,2	2,8	3,66E+09
Total	451,4	182,2	85,3	1,72E+12

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A-Luis SEMPERE BELDA - ISOE2014 Bern, April 9th - AREVA GmbH Proprietary - © AREVA - AL: N - ECCN: N - p.16

SG2 and SG1 Decontamination Factors

		SG2		empty	/conta	ct dose	e rate ((µSv/h))	Ave	rage	DF=	255				
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
West Side	before	8	3	3	6	10	30	130	550	610	590	550	510	540	550	625	22
	after	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	DF	8	3	3	6	10	30	130	550	610	590	550	510	540	550	625	22
East Side	before	10	4	2	16	15	20	290	550	600	560	525	495	500	440	560	5
	after	1	1	2	3	3	2	1	1	1	2	2	3	2	1	1	2
	DF	10	4	1	5	5	10	290	550	600	280	263	165	250	440	560	3

		SG1		empty	contac	ct dose	e rate (µSv/h)		Aver	age	DF=	156				
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
West Side	before	25	7	5	10	18	50	480	705	700	700	650	200	160	130	600	30
	after	1,5	1	1	1	1	1	1	1	1,5	1	1	1	1	1	1	1
	DF	17	7	5	10	18	50	480	705	467	700	650	200	160	130	600	30
East Side	before	27	8	6	17	20	16	35	90	670	610	543	480	470	640	430	50
	after	4	3	1,5	2	1	3,5	4	10	8	6	7	9	6	8	2	2
	DF	7	3	4	9	20	5	9	9	84	102	78	53	78	80	215	25

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A-Luis SEMPERE BELDA - ISOE2014 Bern, April 9th - AREVA GmbH Proprietary - © AREVA - AL: N - ECCN: N - p.17

Very low occupational exposure, particularly during operation

Work Package	Occupational Exposure
Installation and dismantlement of AMDA equipment	45 man.mSv
Performance of decontamination including: process control, sampling, equipment control and maintenance, and other auxiliary works	1,7 man.mSv (average, per large component)
Analyses (lab, HP measurements)	0,2 man.mSv (average, per large component)
	Data: EdF

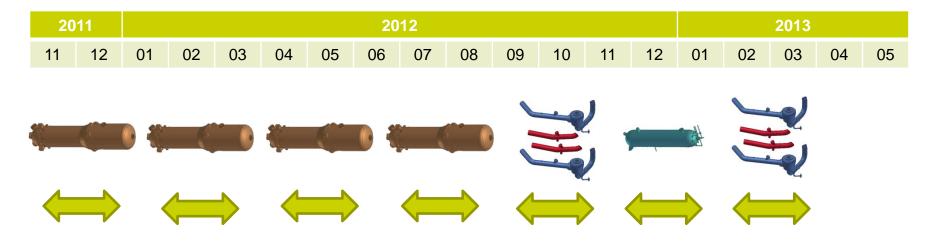
- Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A- Dr. Sébastien Reymann - 14/15.11.2013 - AREVA GmbH Proprietary - RESTRICTED AREVA - © AREVA - AL: N - ECCN: N - p.18

Amounts of radwaste generated

(<1% of activity)

Ion Exchange Resins

- 27 m³ for oxide layer and secondary waste (99+% of activity)
- + 10 m³ for base metal removal
- I m³ for waste water treatment
- In total 38m³ of IX resins used for the entire application


Waste Water Treatment

- Alpha contamination removal from process water prior to disposal
- Total of 95 m³ waste water successfully treated
- Target < 1 Bq/L alpha (!!)</p>

Bag Filters

Total of 16 bag filters were used to collect solids

Project timeline

Components treated individually

- Longer time schedule as for simultaneous Full System Decon
- Time after SAFSTORE less of an issue

Objective accomplished: All decon targets were met

Pictures: EdF

	Average Thickness of a Chooz A SG	Average Composition of Chooz A SG	Average Contamination of layer
External Oxide Layer	3.14 µm	Iron 81.5% - Chromium 7.5% - Nickel 11%	59,5 GBq 60Co
Internal Oxide Layer	6.48 µm	Iron 49% - Chromium 41% - Nickel 10%	383 GBq ⁶⁰ Co
Base metal	9 µm removed	Stainless steel 18-10	3,4 GBq ⁶⁰ Co

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A-Luis SEMPERE BELDA - ISOE2014 Bern, April 9th - AREVA GmbH Proprietary - © AREVA - AL: N - ECCN: N - p.21

Objective accomplished: Total removal of contaminated layers + 9 µm base metal

Picture: AREVA & EdF

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A-Luis SEMPERE BELDA - ISOE2014 Bern, April 9th - AREVA GmbH Proprietary - © AREVA - AL: N - ECCN: N - p.22

Objective accomplished: Components leave controlled area as VLLW

- Oxide layer and base metal removed from all the large components
- Steam Generators left the Chooz site as VLLW to French storage facility (ANDRA)
- Loops already dismantled

Steam generator's radiological characteristics

Before	After
40000 Bq/cm ²	40 Bq/cm ² (CORD)
40000 Bq/cm ²	2000 Bq/cm ² (CeriumIV for plugged tubes)
700 µSv/h	1µSv/h
450 GBq Co60	0.65 Gbq Co60

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A-Luis SEMPERE BELDA - ISOE2014 Bern, April 9th - AREVA GmbH Proprietary - © AREVA - AL: N - ECCN: N - p.23

All rights are reserved, see liability notice.

Pictures: EdF

Content

- The Chooz A dismantlement project
- Chemical decontamination of Chooz A
 - Process selection
 - Process description
 - Decon equipment
 - Implementation (Pictures)
- Results obtained
 - Corrosion products and activity removed
 - Dose rate measurements before/after
 - Radwaste generated (type & amount)
 - Project timeline
 - Objective accomplished (Pictures)

Lessons learned and recommendations

Short summary

Lessons learned and recommendations

- Previous examinations on representative samples in hot lab enable process optimization
- Particularly useful in non-standard plant configurations, divergent water chemistries or unique operating history
- Removal of base metal generates a high volume of radwaste relative to activity removed
- Flexible base metal removal amount are recommed vs. fixed amounts (dynamic measurement required) to minimize waste
- Treating single components separately is more time consuming than a simultaneous Full System Decontamination, but feasible
- Virtually any decontamination target can be achieved efficiently and safely via AREVA chemical decontamination processes

Content

- The Chooz A dismantlement project
- Chemical decontamination of Chooz A
 - Process selection
 - Process description
 - Decon equipment
 - Implementation (Pictures)
- Results obtained
 - Corrosion products and activity removed
 - Dose rate measurements before/after
 - Radwaste generated (type & amount)
 - Project timeline
 - Objective accomplished (Pictures)
- Lessons learned and recommendations

Short summary

Summary of a successful project

- Seven (7) decontamination individual applications of large components were performed successfully and without incidents at NPP Chooz A
 - Removal of the complete oxide layer
 - Removal of ~ 9µm of base metal
- All decontamination objectives were accomplished
- All decon targets were met or exceeded
- Large components classified as VLLW after decontamination
- Removal of alpha activity in waste water prior to disposal (<1 Bq/L !)</p>
- Pioneering work: First SGs in France to leave the controlled area

66

Editor and Copyright [2014-04-09]: AREVA GmbH – Paul-Gossen-Straße 100 – 91052 Erlangen, Germany. It is forbidden to reproduce the present publication in its entirety or partially in whatever form without prior consent. Legal action may be taken against any infringer and/or any person breaching the aforementioned prohibitions.

Subject to change and error without notice. Illustrations could be similar. The statements and information in this brochure are for advertising purpose only and do not constitute an offer of contract. They shall neither be construed as a guarantee of quality or durability, nor as warranties of merchantability and fitness for a particular purpose. These statements are based on information that was available to us at the date of publication. Only the content of the individual contracts shall be authoritative for type, quantity and properties of goods and services.

End of presentation

Decontamination of the 4 steam generators, the pressurizer and loop piping at the French NPP Chooz A

Luis SEMPERE BELDA AREVA Chemistry Services

Contact:

luis.sempere-belda@areva.com

Co-Authoring: S. Reymann, J.P. Moreira do Amaral, R. Neuhaus, A. Basu

ISOE Bern, April 9th, 2014

