

Study of the ¹³³Xe exposure

A. Perier, G. Le-Meur, E. Courageot, C. Monier,D. Thers, B. Le-Guen, S. Blond, G. Cordier,E. Gaillard-Lecanu

ISOE, April 2014

CONTEXT

Fission products

- In the fuel claddings
- In the primary circuit in case of clad defect

Unit outage

- Opening of the primary circuit if the radiochemical criteria are reached
- Potential dilution of fission products in the air of the reactor building in case of clad defect

Measurement of air contamination in the reactor building

Plant Radiation Monitoring System

■ ¹³³Xe

- Half-life of 5.2 days
- Photons: 31.6 keV (46.9 %), 81.0 keV (37.3 %)
- $\hfill\square$ β -: 100 keV (mean), 346 keV (max)

Exposure scenario

Workers on the pool floor

- 3 confinement barriers
 - Fuel cladding (1)
 - Primary circuit (2)
 - Reactor building wall (3)

XENON-133 EXPOSURE

State of the art

- Radioactive inert gas: external exposure (ICRP 30)
- □ Semi-infinite cloud of ¹³³Xe: \dot{E} = 5.0 µSv.h⁻¹.MBq⁻¹.m³ (ICRP 68)
- Data available for an exposure in a semi-infinite cloud of ¹³³Xe

Objectives

- □ To study the external exposure to ¹³³Xe in a reactor building (realistic scenario)
- To study the impact of the change in ICRP 103 for the limit equivalent dose to the eye lens

Method

- To model the external exposure to ¹³³Xe in a semi-infinite cloud to compare with the data available
- To model the external exposure to ¹³³Xe in a reactor building (realistic scenario)
- □ To determine the scenario of maximum exposure to ¹³³Xe
- □ To obtain the dose rates (eye lens, whole body)

MODELING OF HUMAN BODY

GEANT4

Monte-Carlo code to simulate the interaction of ionizing radiation with the matter

MIRD phantom

- In MIRD phantom is made up of 70 volumes
- Addition of the eyes, the eye lenses and their radiosensitive part

MIRD phantom

EXPOSURE IN A SEMI-INFINITE CLOUD

Validation by a comparison with the data available in a semi-infinite cloud of ¹³³Xe

Simulations

- Phantom on the floor, in a cloud containing air
- In a hemispherical cloud, a source of monoenergetic photons is generated: 31.6 keV (46.9%), 81.0 keV (37.3%)
- Fitting of effective dose rates E_{31.6 keV} and E_{81.0 keV} versus the radius of the cloud
- Extrapolation of effective dose rate: E_{31.6 keV} and E_{81.0 keV}

EXPOSURE IN A SEMI-INFINITE CLOUD

In a cloud of xenon-133 with a 1000 m radius and with a concentration of 1 MBq.m⁻³

Source	Ė (µSv.h ⁻¹ .MBq ⁻¹ .m ³)
¹³³ Xe	6.87 ± 0.03
31.6 keV photons	0.66 ± 0.01
81.0 keV photons	6.21 ± 0.03

Statistical uncertainty in the results

Studies	R _{cloud} (m)	Methods	Dose rate (µSv.h ⁻¹ .MBq ⁻¹ .m ³)	
Poston & Snyder (1974)	infinite	Monte-Carlo	Ė=6.01	
Piltingsrud & Gels (1985)	1000	Calculation	Н́р(10)=7.24	
Eckerman & Ryman (1993)	infinite	Monte-Carlo	Ė=5.62	
Perier (2013)	1000	Monte-Carlo	Ė=6.87 ± 0.03	
■ Result consistent ⇒Method validated				

MODELING OF A REACTOR BUILDING

Modeling of the reactor building above the pool floor

Reactor building above the floor

- D Modeling with GEANT4
- PWR 1300 MW
- □ Diameter = 50 m
- □ Height = 40 m
- Largest elements: 4 steam generators

• Find the scenario of maximum exposure to ¹³³Xe

- D Modeling of the reactor building
- Position of the phantom

EXPOSURE SCENARIO IN THE REACTOR BUILDING

- Effect of steam generators on the exposure at the floor level
 - Energy density: maximum in the center of the reactor building
 - Energy density: lower in the reactor building containing the steam generators

Scenario of maximum exposure

- Reactor building without steam generators
- In the center of the reactor building

MODELING OF THE XENON-133 CLOUD

Monte-Carlo simulation technics

- ¹³³Xe cloud is included in the reactor building
 - \Rightarrow To use several hemispherical shells of ¹³³Xe truncated by the reactor building wall
 - \Rightarrow To sum each contribution to obtain the dose rates in the reactor building

Advantage

Evolution of dose rates versus the radius of the cloud

DOSE RATES DOSE RATE INSIDE A REACTOR BUILDING

Dose rates with a ¹³³Xe concentration equal to 1 MBq.m⁻³

(Statistical uncertainty in the results)

CONCLUSION

Exposure to ¹³³Xe

□ In a ¹³³Xe cloud ($A_{xe-133} = 1MBq.m^{-3}$): $\dot{E} = 5 \mu Sv.h^{-1}$ (ICRP 68)

- Validation of the modeling by a comparison with the data available
- Modeling of the exposure in a reactor building

Objectives

- To evaluate the exposure in a reactor building for a ¹³³Xe concentration equal to 1 MBq.m⁻³ (by using a conservative scenario)
- $\dot{E} < 5 \,\mu Sv.h^{-1}$
 - H_{Lens} < 5 μSv.h⁻¹
- To evaluate the impact of the new equivalent dose to the eye lens
 - E = 20 mSv/year
 - H_{Lens} = 150 mSv/year, new limit : H_{Lens} = 20 mSv/year
- ⇒Positive impact

Perspectives

Feasibility study for a validation in a reactor building

Partial validation with dosimeters and an X-ray generator

COF Subatech

THANK YOU

