

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Impact of Operational Events on Particulate Transport and Radiation Fields

Daniel M. Wells, PhD – Project Manager

ISOE European Symposium

20 June 2012, Prague, Czech Republic

High Flow Area Activity Uptake Background

- In large piping surfaces, surface activity stays the same before and after shutdown
- Activity incorporation occurs during normal operation
 - Gamma spectroscopic studies have demonstrated no activity increase during outage maneuvers*

*PWR Activity Transport and Source Term Assessment: Surface Activity Concentrations by Gamma Scanning. EPRI, Palo Alto, CA: 2011. 1023027.

Low-Flow Area Activity Uptake Background

Increased Dose Rate after Shutdown (high duty core, 2nd cycle after SGR)

- Electronic dosimetry studies of low-flow systems shows higher dose rates after shutdown
 - Particulate transport after SG replacement is suspected
 - Uprated cores may change transport mechanisms
 - Plant trips and non-standard operations
- Trends observed in PWRs and BWRs

Modeling the Impact of Insoluble Deposition **Re-entrainment and wall shear**

Kern-Seaton Equation*

dW

dt

= vC - EW		
W	=	Deposit weight per unit area
t	=	Time
V	=	Deposition velocity
С	=	Concentration in fluid
Е	=	Re-entrainment coefficient

Re-entrainment (E) directly proportional to wall shear

- = Fanning friction factor
- = Fluid density= Average fluid velocity
- = Wall shear stress

*Kern, D. Q., Seaton, R. E., "A Theoretical Analysis of Thermal Surface Fouling," British Chemical Engineering; pp 258-262, 1959

Re-entrainment Coefficient Versus Wall Shear Stress

Impact of SDs on BWR Dose Rates

- Minimal effect expected in high wall shear regions
- Insoluble deposition expected in low shear regions; however, reactor water concentrations relatively low

- Standard RP monitoring provides limited data
- Installed electronic dosimeters (ED) monitoring facilitates assessments

Installed Remote Technology in BWRs Electronic Dosimetry

- Provides time dependent information about changes in dose rate
- Expands
 understanding of
 impact of operations
 and corrective actions
- Limited data available from BWRs

Impact of SDs on PWR Dose Rates 1025305 (June 2012)*

- No significant impact of shutdowns on piping or steam generator dose rates in high shear regions
 - Compared to BWRs, Co-58 and Co-60 releases are very high and primarily soluble
- Limited dose rate increases observed in low fluid shear regions:
 - Shutdown cooling
 - Letdown system
- Electronic dosimetry is valuable assessment tool; extensive database available

Correlating Piping Dose Rates to Particulate Concentrations*

Method

- 1. Correct ED data for impact of coolant activity
- Estimate (mR/h)/(µCi/ml) based on total Co-58 immediately before and after peroxide injection
- 3. Assess piping dose rate buildup as function of time, operations and coolant particulate concentrations
- Extensive PWR database available; BWR database appears limited
- Can process be modeled using Kern-Seaton approach?

Determining the Impact of Particulates

EOC 16 ND Pump Common Suction • Dose rate 1.E+04 from coolant activity calculated 1.E+03 and subtracted nR/hr from raw data 1.E+02 Calculated Dose from Coolant Activity 1.F+01 3/5/04 3/6/04 3/7/04 3/8/04 3/9/04 3/10/04 3/11/04 3/12/04 3/13/04 ND Pump Common Suction Calculated Coolant Dose RCP A&C OFF RCP B OFF --- RCP D OFF 1B ND Pump ON 1A ND Pump ON Peroxide Addition

Correlating Measured Particulates to Calculated Impact on Dose Rate

EOC 16 ND Pump Common Suction Calculated Piping Dose

RESEARCH INSTITUTE

Summary

- Piping dose rates primarily controlled by incorporation of soluble radionuclides <u>during power operation</u>
 - Additional incorporation of solubles expected to be minimal during shutdown evolutions
- Insoluble deposition in dead legs and regions of low fluid shear during shutdown transients lead to increased dose rates
- <u>Electronic dosimetry significantly improves</u> capability to assess impacts of insoluble deposition as well as corrective actions to mitigate associated dose
 - Guidance incorporated into the Revision of BRAC and SRMP (2012-2013 Project).

Together...Shaping the Future of Electricity

