

Radiation Measurement Experiences and Lessons to be Learned in Response to the Fukushima NPP Accident

Frazier Bronson CHP VP, Deputy Director R&D Canberra Meriden CT USA

Preparation for this presentation

Previous experience at things like this

- TMI On-site 36 hours after the accident, for the next ~1mo
 - Managed the Radiation Management Corporation team responding to this accident
 - Mobile WBC at TMI during the accident and for the next many months
 - Operated mobile gamma spec laboratory did most of the effluent measurements from unmonitored release points
 - On-site counting lab during the decon project
 - Off-site environmental monitoring program including 1 truck of chocolate per day
- Chernobyl several trips to Ukraine
 - Supplied 7 mobile WBC in support of Population monitoring + 2 more to the plant
 - Worked with the German team performing these population studies

Published or on-line literature about instrumentation there

- Extensive data available about this accident some of it is correct and useful
 - much of it in Japanese; electronic translation software is still only marginally understandable

Health Physics Society Professional Development School - Fukushima

This is a small part of a lecture I gave as one of the instructors

Personal experience in Japan

- Part of AREVA initial response team first 4-5 months
- Since then assisting our Japan office in business development efforts
- 19.5 trips to Japan since the accident; 5.5 months in Japan; 1.2 mo on airplanes = 3mSv
- My major project the past ~2 year period
- Our team prepared many concepts and proposals, some of which were actually accepted

ANBERRA

2

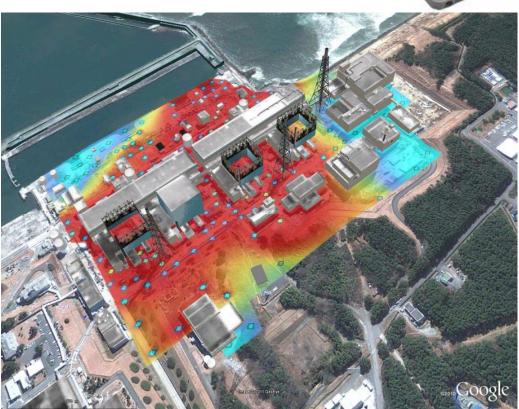
Key points from this presentation

- Purpose is to inform, educate, and learn for the future
- Yes, some things could have been improved, but the things that the professionals responding did were very good, considering the circumstances
- Real doses are quite low, even among workers
 - Good Rx design, Rx operations and response, HP response
- Imagined doses and associated harm are high, among workers and population
- ALARA should apply to both real and imagined dose, and the economic consequences of imagined dose/activity. It is critically important to the success of the NPP industry
 - Education, dissemination of reliable quality information
- Measurement ideas that were proposed are shown in this presentation. Most have not been accepted [so far], but many are still good ideas, so are included.

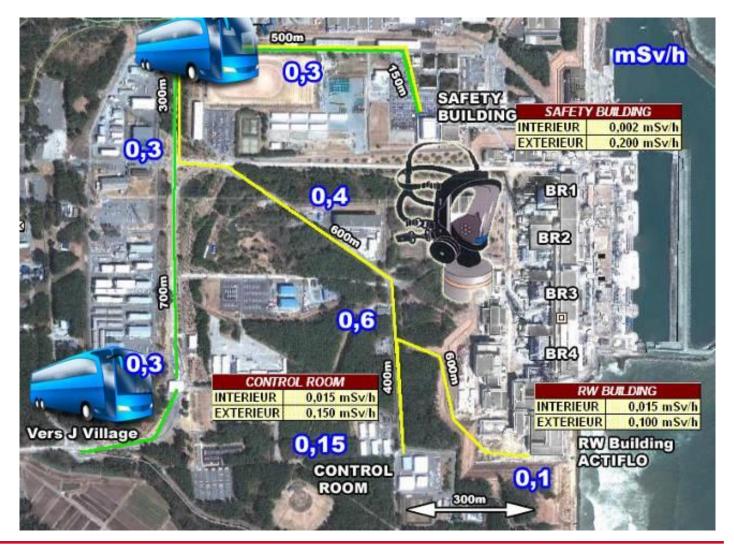
NBFRRA

Comparison to TMI and Chernobyl

Item of comparison	ТМІ	Chernobyl	Fukushima
Reactors present, damaged	2, 1	4, 1	6+4, 4
Earthquake damage	-	-	Minimal
Tsunami damage	-	-	Yes
Loss of outside power	-	-	Yes
Explosion with extensive damage	-	Yes	Yes
Loss of many roads to and from the area	-	-	Yes
Large releases to the environment	-	Yes	Yes
Gov't resources focused on NPP accident	Yes	Yes	No
Population evacuation	140,000 v	350,000 m	200,000 m
Exclusion zone	-	1660 mi ²	~140 mi ²
Deaths	0	56	19,000 [0 Rx]
Evolving event, w/possibility to get worse	Yes	Yes	Yes
Monitored release point, known source term	-	-	-
Money and other resources to respond	Yes	-	Yes
Response decision-making process	Quick	Secretive	Deliberate
ISOE ALARA Symposium Tokyo Japan August 2013		ļ	


EARLY PHASE ON-SITE ISSUES

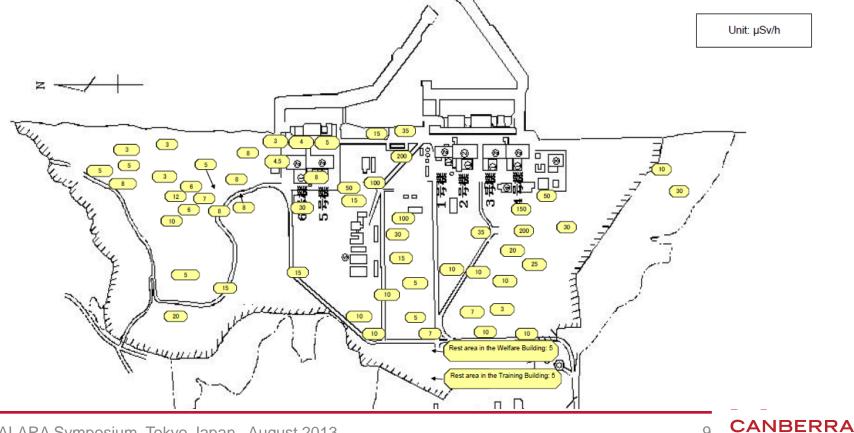
generally as Canberra input to the AREVA response effort


Mapping radiation levels on-site

- A few weeks after the accident, the AREVA team prepared the first map to support the water treatment facility installation and operation
- During the pre-installation inspections workers just walked around with Colibri doserate meter
 - With integral GPS and logging
- Map created using CEA radiological mapping algorithms licensed by Geovariences

Map used by AREVA team for dose optimization planning

- where to put water processing equipment
- lowest dose route to get there



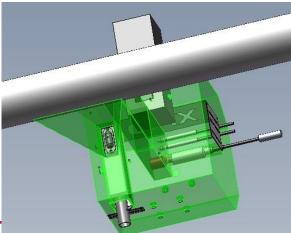
January 2013TEPCO map of site

ISO-doserate contour map would be more informative to workers

5uSv/hr in rest areas

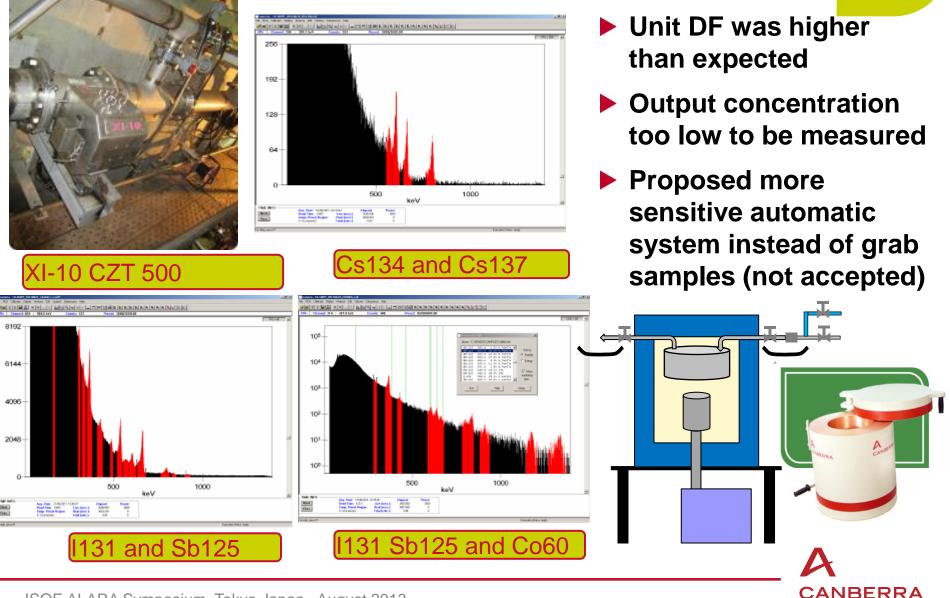
Survey Map of the Entire Fukushima Dailchi Nuclear Power Station (Used in the Measurement Performed on January 7-8, 2013)

AREVA-Veolia-Canberra water processing system


75 days from conception to operation !!

Instrumentation [Canberra part]

- 5 spectroscopy measuring station, each with dual CZT probes
- MCNP calibration
- 6 wide dynamic range dose-rate monitoring points
- Shielding for all sensors
- Control software for setup, adjustment, results, data archiving

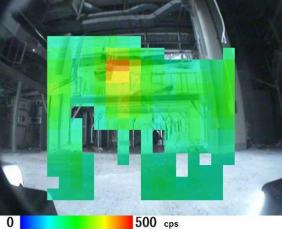


Activity determination via CZT gamma spectrometry measurement channels

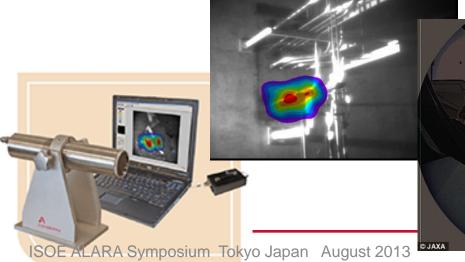
Sorting waste during demolition

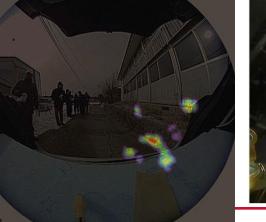
- Part of AREVA plan for waste retrieval
- Sort into proper radiological category early to save money and dose later when processing waste
- Create categories of waste based upon likely future waste processing and disposal methods
 - ▶ E.g. <1 Bq/g; 1 100 Bq/g; 100-10,000; >10,000
- Have separate containers for those categories
- Use imaging system on crane to identify hot debris
- Use remotely operated gamma spec station
 - 10' ISO container
 - Shielded and collimated Ge detectors
 - One pointing up for items suspended by crane
 - One pointing to the side for items on truck or front loade

Short count time


- 15 seconds for 100 Bq/g
- 120 sec for 1 Bq/g
- Not implemented

Gamma Imaging activities

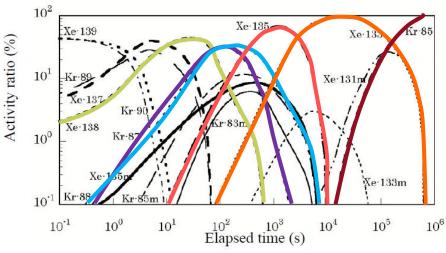

- Many "research" prototypes tried
- Complex, large, poor resolution, so far
- Don't think that any are in routine use yet
- Our commercial unit quite well suited, but not tried yet



Where is the core and is it stable

- In late summer 2011, outside observers, notably the US INPO team, raised concerns about the status of the core
 - Where is it ? Best guess Unit 1 melted thru, unit 2-3 inside RPV
 - How stable is it ?
 - OK now, but want early warning of anything making it less stable
 - E.g.: another earthquake, debris removal, fuel removal activities
 - INPO called this "Monitoring the approach to criticality"

Proposal B – very sensitive off-gas monitoring


- Gasses quite prolific early fission products with nice high energy gammas
- Gasses can escape the water fairly easily and quickly
- Ratio of gas concentrations can tell the time of the fission

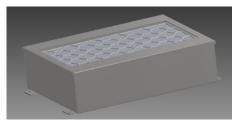
Ge noble gas monitor

- Similar to OL3 and Taishan NPPs
- Large Ge, large pressurized gas chamber
- First proposed mid 2011

Proposals requested again; situation still open

Vehicle Contamination Monitor for TEPCO

- Vehicles leaving the site were generally un-monitored or ineffectively monitored [high background] the first few months
- We proposed this to TEPCO as part of the AREVA team
- Not accepted
- Added roof to improve conditions for the workers in winter
- Still labor-intensive and many non-ALARA man-hours in 3uSv/hr field



Vehicle Contamination Monitor – part 2

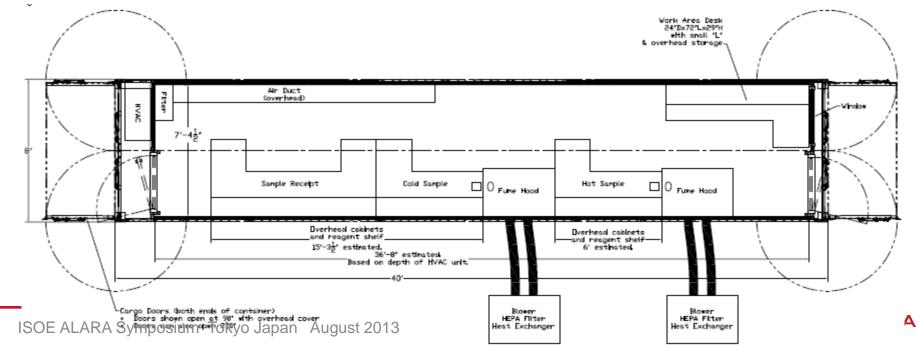
Revised design to conform to new TEPCO specs Fall 2012

- 4 Bq/cm2 in max 1000cm2 area; 0.3 uSv/hr bkg
- 40 Bq/cm2 in maximum 1000cm2 area at 3 uSv/hr
- Busses, trucks, minivans, cars
- We proposed using 78 large area B-Gamma sensors
 - From our Argos Total Body contamination monitor
 - Beta channel for surface contamination
 - Gamma channel to find radioactivity in cargo
- Special software to interpret and display present the results
- No contract awarded; not sure why

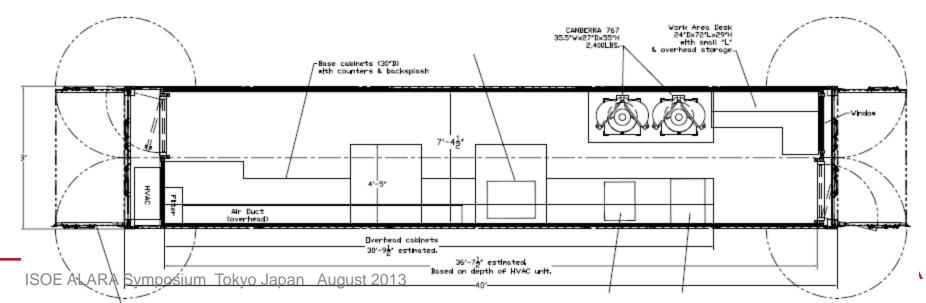
Radiation measurement labs

Contamination and high background shut down the on-site NPP lab

Samples for radioassay being taken off-site – still


- Inefficient use of labor for transport
- Delayed time in response
- No mobile labs [I operated one after the TMI accident]
- As part of the AREVA team, prepared proposals for transportable RadioChemistry Sample preparation Laboratory, and Radiometric Sample Assay laboratory
- Could be built off-site and transported complete to site
- Could be relocated as site remediation progresses
- Same concept used at TMI, Chernobyl, and various D&D jobs
- Concrete block shielding walls could be added if needed

RadioChemistry Laboratory


▶ 40' long ISO Shipping Container, extra height, covered entrance

- Laboratory furniture installed at factory; ready to operate within a few days of site arrival
- Air contamination monitors and dose rate monitors
- Sample receipt area with contamination checking radiometric equipment
- Two work areas one for hot samples, one for low level samples
- Two radioisotope fume hoods with external HEPA filters on exhaust
- Sample preparation equipment and measurement equipment not defined yet
- Water supply and drains to be defined either plumbed or from containers

Radiometric Sample Assay Laboratory

- ▶ 40' long ISO Shipping Container, extra height, covered entrance
 - Shields installed at factory, all equipment calibrated at factory, ready to operate within 2-3 days after container installation and electrical connection.
 - Air contamination monitors and dose rate monitors
- Sample receipt area with contamination checking radiometric equipment
- Dual low energy Ge detectors with shields
- Liquid Scintillation Counter with automatic sample changer
- Alpha spectroscopy system with 6 channels
- Gross alpha/beta counter with automatic sample changer
- Portable spectroscopy for field gamma spectral measurements

Air contamination, respiratory protection

- Is radiation the biggest hazard here ?
- Are respirators ALARA ? Probably not, now that I-131is gone and once the first rainy season is over
- Use more alarming CAMs several on-site already
- More ALARA to use personnel air particulate samplers and frequent WBCs to prove respirators not needed

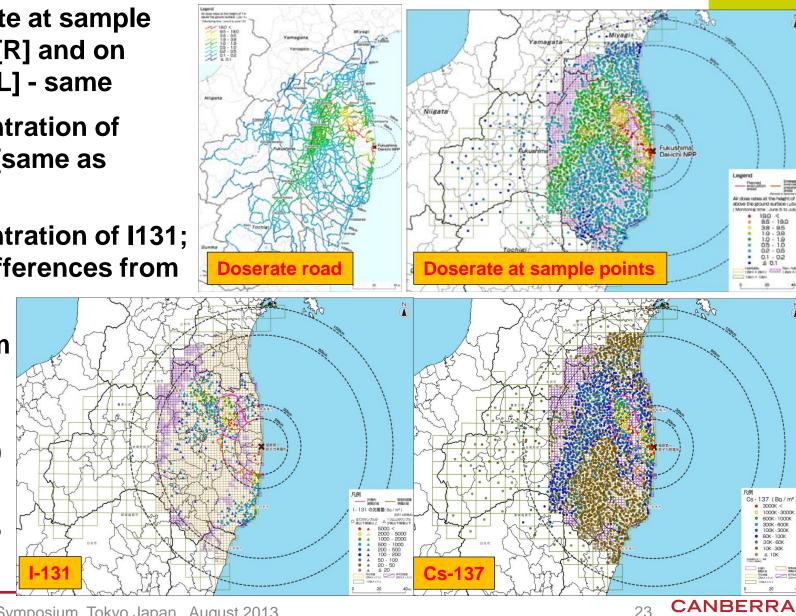
....

(夜の森線2号)

ENVIRONMENTAL AND OTHER OFF-SITE ISSUES

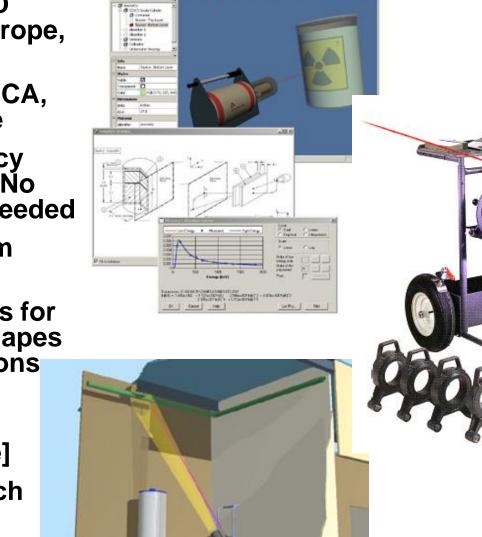
Ground deposition measurements and maps

- Jun-July 2011 JAEA began this massive project
- 2200 soil locations, sample + doserate [440 people]
- Vehicle doserate where roads [291 people]
- Ge gamma spec at all locations
 - Cs137 Cs134 I131 Te129m Ag110m
- Sr89 Sr90, 100 targeted locations
- Pu238 Pu239+240, 100 locations
- Maps released as available, starting Aug30 2011
- Vertical depth Geoslicer
- River water Cs I Pu Sr
- River bottom sediment Cs I
- River suspended sediment Cs I
- Well water Cs I Sr
- Pu241 and I129 via AMS in progress
- http://ramap.jaea.go.jp/map/


Ground deposition measurements

- Doserate at sample points [R] and on roads [L] - same
- Concentration of Cs137 [same as **Cs134**]
- Concentration of I131; note differences from **Cs137**

Ag110m much like l

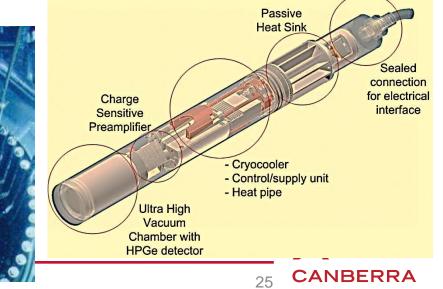

Sr89/90 found

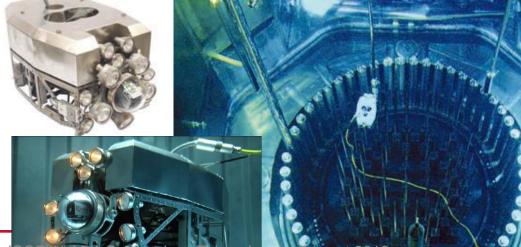
Pu also found

ISOCS – Ge quantitative measurement system

- Very common for D&D projects in US and Europe, but very few in Japan
- Ge detector, shield, MCA, gamma spec software
- Mathematical efficiency calibration software - No radioactive sources needed
- Calibrations valid from 10 to 7000 keV
- 21 geometry templates for common container shapes and sample distributions
- ~30 new orders since accident [most for detector and software]
- Don't really know much about how they are being used

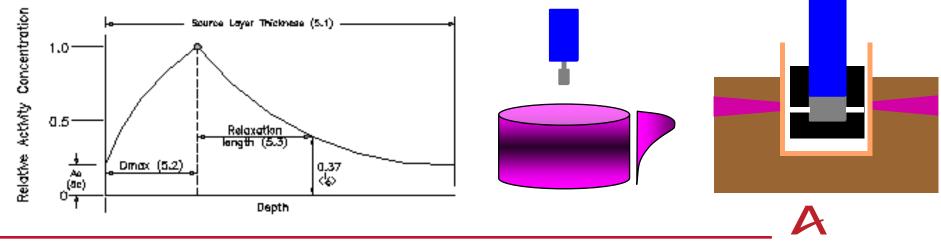
Underwater measurements

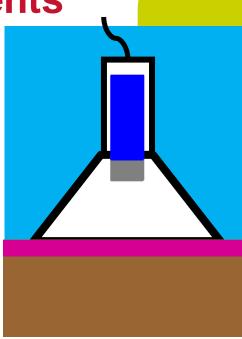

- Desire to know the inventory of radioactivity at the bottoms of rivers and lakes and seas
- Taking samples difficult and unreliable


Proposed several alternatives

- LN cooled Ge any size detector
 - Used many times before Maine Yankee at right
- Electrically cooled Ge
 - Limited power means modest size Ge
- ROV submarine with LaBr scintillator
 - Routinely done by AREVA in NPP jobs

Selected the ROV + LaBr option





Shallow underwater measurements

- Large number of lakes and ponds [3700] to be measured
- Canals delivering water to rice fields MANY
- Proposed water displacement tool on detector
- Nal detector to show that results are OK 1min
- CeBr detector to estimate depth
 - Using Cs134 low and high energy lines and ISOCS calculations to determine depth profile

Can also use collimated detector for boreholes

ANBFRRA

26

Other food items that have already been shown to be problem

- Leafy vegetables early on from deposition
- Wild boar yes they are in Japan
- Mushrooms, especially dried ones
- Other dried fruits removing water increases Bq/kg
- Fish especially bottom fish like flounder; many new headlines
- Hay and silage feed for cows [building measurement unit]
- Cows especially expensive ones fattened on [radioactive] rice straw

Forest contamination monitoring with UAVs

- Currently being used close-in to the plant where there is a no-fly rule for aircraft – apparently doesn't apply here.
- Forest contamination very localized
 - Canopy cover, Water runoff, liter buildup
- Need higher resolution maps than higher altitude manned helicopters
- 220 lb unit can carry 60 lbs
- Map forests, rocky slopes, marshes

Environmental monitoring posts

- Located in major population centers near NPPs [22 around both Fukushima Tepco sites]
- High Pressure Ion Chamber
- Nal spectrum
- Moving filter air particulate monitor
- Real time doserate available to public on website and at monitor

Environmental Monitoring Post after losing a battle with a Tsunami

Nice elegant system for normal NPP operations

Emergency response issues:

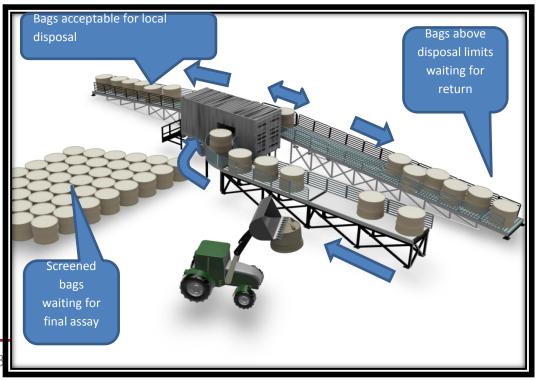
- Too few in affected areas where population was
- No lodine collection devices [major population dose]
- Air samplers don't work when power was down [all 22]
- Doserate system runs few more days on batteries
- No real-time communication after loss of power

Reducing environmental contamination

Washing; removal of top layers; moving top to below surface

Waste debris measurements - bags

- Immense volumes of radioactive soil, vegetation, and other debris
- Waste collected in 1 m3 Super Sacks
- Bags located at thousands of temporary local holding areas
- Will be eventually moved to one of 9 interim storage facilities for consolidation, incineration, and burial
 - 2015 operation estimated

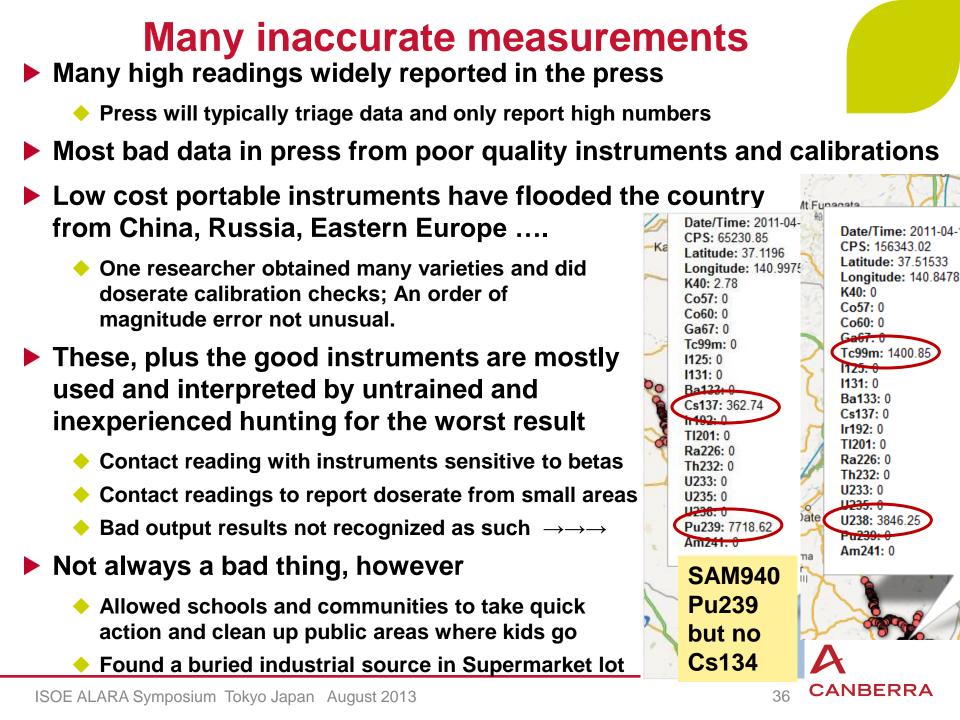

Local bag proposal

- Allows immediate disposal of very low level bags, not 2016
- Allow lower cost "normal" disposal
- Field unit screening
 - Easy to transport to local sites over small roads
 - Nal spectroscopy from single point
 - High uncertainty

Disposal site unit – definitive


- Dual Ge detectors
- High quality results
- Public and technical acceptance

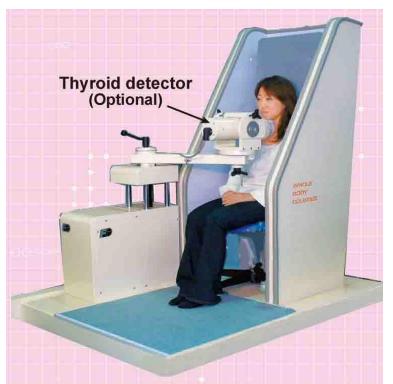
Waste debris measurements at proposed Interim Storage Facility


- Vehicle assay system for incoming vehicles with unprocessed material and exiting vehicles with product
 - Multiple Nal detectors for quick measurements
- Combustible materials [vegetation, construction debris] to be incinerated
 - Proposed system to assay the incinerator ash
 - Ge system for monitoring ash on conveyor
- Under active consideration might actually happen

盦

NBERRA

NPP WORKERS AND GENERAL POPULATION


ISOE ALARA Symposium Tokyo Japan August 2013

Internal doses of workers

- 4 In-vivo counters at Dai-ichi; 4 more at Dai-ni
- WBCs in Japan NPPs all local brands that qualify to local standards
 - All chair-types
 - All with incomplete shielding [side, back, not front]
 - Most are plastic non-spectroscopic gross counters
 - Maybe OK for normal plant operations
 - Where internal dose is minimal
 - And if located in areas where background is low
 - And where there are not many lawyers
 - Not suitable for these type events
 - TMI, Chernobyl, Fukushima

All WBCs unusable

- Initially because of power
- After power restored, because of high background

Worker internal exposures by JAEA

Most common WBC in rest of world NPPs is Canberra FastScan

- Full gamma spectroscopy
- Total body measurement
- Full shadow-shield for use in elevated external background

FASTSCA

- None in Japan NPPs
- 4 FastScans at JAEA, including 2 mobile units
- JAEA mobile FastScan WBC moved to Onahama plant [55km S] and started counting selected workers on March 23 [+2w].
- Used to select workers for followup measurements

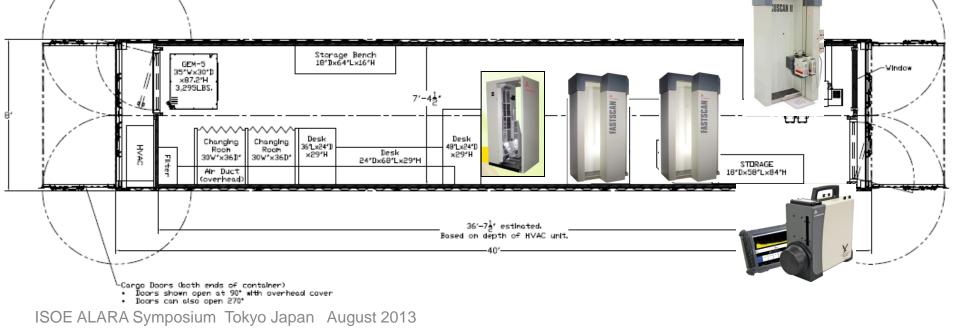
Worker internal exposures at JAEA-Tokai

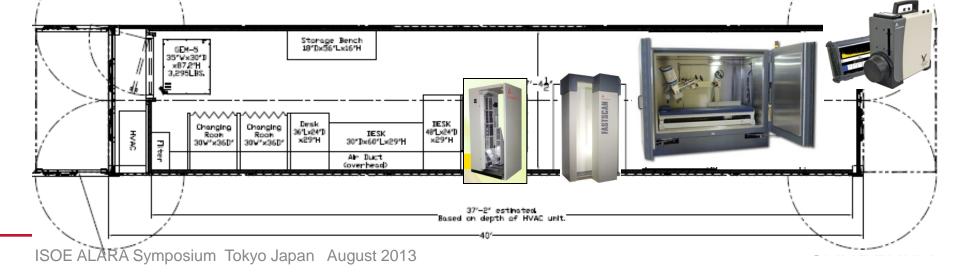
- 23 April 5 August 2011
- Workers with preliminary dose estimate >20 mSv went to JAEA Tokai for additional monitoring.
- Whole body monitoring
 - 2x Ge detectors in 4pi shielded room with 20 cm thickness iron
 - 2x Canberra FastScan w/dual Nal detectors
- Earthquake reduced elevation of shield 1m and caused minor damage to mechanicals
- Thyroid monitoring
 - Ge detectors in the shielding room
 - Later Nal detectors on neck
- Number of measured workers
 - 39 in initial wave
 - 🔶 560 total [6 female]

J-Village WBC station implemented by TEPCO

- Built two large temporary structures
- Installed Tungsten blankets to reduce background
- One facility for 10 plastic chair-type WBCs
 - Additional shielding
- Other facility for 1 mobile and 1 fixed FastScan
 - Shielding not necessary, but done for consistency
 - Used for all workers >screening level on plastic WBCs

ISOE ALARA Symposium Tokyo Japan August 201




Gamma InVivo Laboratory

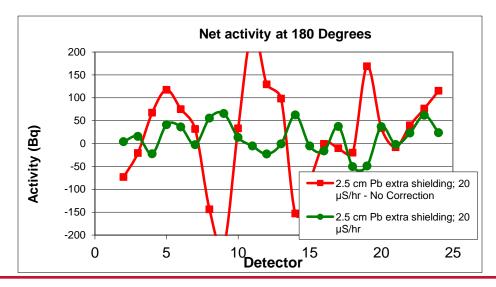
- As part of AREVA project, proposed turn-key transportable system
- Can be installed close to site [better worker efficiency]
- 40' long ISO Shipping Container, extra height, covered entrance
- Ready to operate within 2-3 days after container installation and connection.
- **GEM** Portal monitor as workers walk through door; External contam'n monitor
- Two FastScans for most WBC measurements
- Accuscan-II and portable Ge for difficult cases and emergency alpha
- ▶ Not purchased, but still recommended for D&D phase

Alpha InVivo Laboratory

- As part of AREVA project, proposed turn-key transportable system
- Recommended during damaged fuel removal operations when alphas are a potential risk
- 40' long ISO Shipping Container, extra height, covered entrance
- Shields installed at factory, all equipment calibrated at factory, ready to operate within 2-3 days after container installation and electrical connection.
- Should be at hospital designated to receive injured workers
- U/Pu lung counter for alpha contamination in lung or other parts of body
 - Also includes external contamination monitor and FastScan total body

External contamination monitoring

- End of 2011 situation
 - 20uSv/hr field
 - multiple people waiting in line
 - hand-frisker surveys
- Not ALARA
- Inadequate survey method
 - should be 2-3 min per INPO in normal background
- Expensive in lost productive labor
- Asked by TEPCO for alternative solution

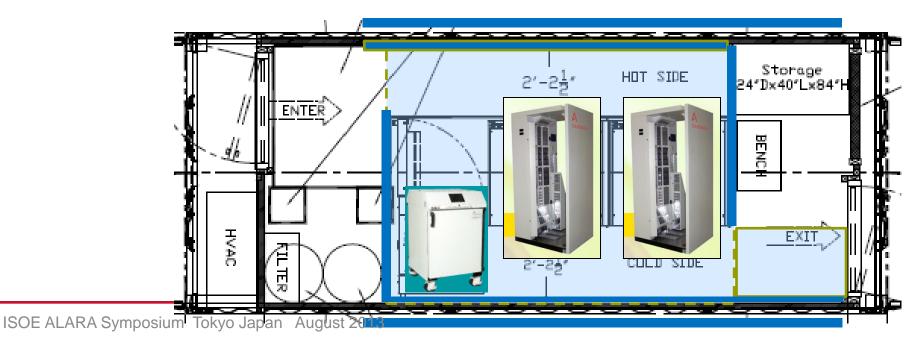


Worker external contamination

Requirements:

- 4 Bq/cm2 in 10x10cm area [400 Bq] in a 20 uSv/hr
- Performance of Argos
 - 1 Bq/cm2 in 10x10cm area [100 Bq] in 0.03 uSv/hr
- Problems cannot be solved by longer count time because of the person changes the background
- Extra shielding not adequate due to scatter
- But OK with combination of additional shielding and subject-size detector-specific correction factors

2.3091


45

ANBFRRA

ISOE ALARA Symposium Tokyo Japan August 2013

Shielded Contamination Control Container

- 20' ISO container with 2 Argos;
- Fully assembled and tested at factory; only needs electricity to run
- Can be moved around on site project progresses
- 5cm of Steel can be built into unit walls and floor
- Additional steel can be added to wall[s] and roof on site if needed
- Contains 2 Argos units with Zeus option and Cronos object counter
- No order; person wanted it moved to new job

Population measurements for purposes of dose estimation

and just because it makes people feel better

ISOE ALARA Symposium Tokyo Japan August 2013

In-Vivo counting other accidents

TMI accident and cleanup

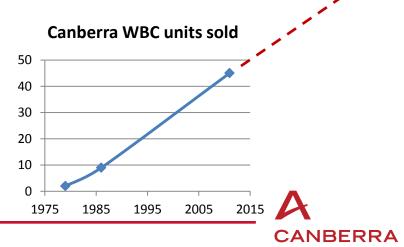
- I mobile Accuscan during accident for workers
- I mobile Helgeson bed unit for population
- 1 FastScan and 1 Accuscan in modular building for cleanup and unit 2 operations

Chernobyl

- 7 mobile FastScans [6 part of German population counting project]
 - > 1 Accuscan-II, 1 U/Pu Lung counter for cleanup

ISCAN

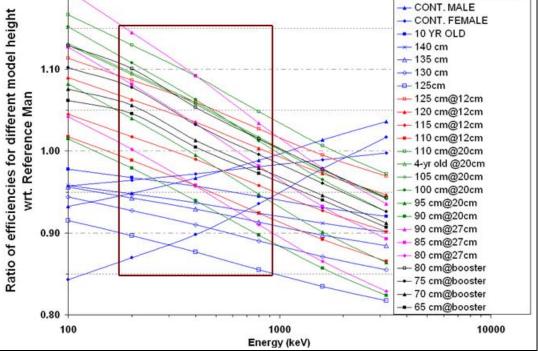
NBFRRA


InVivo counting in Japan

- 10 Canberra Chair-types in '80s, probably in response to TMI
- Modern WBCs in Japan, before the Fukushima accident
 - 1 Accuscan; Scanning Nal Bed
 - + 1 Accuscan-II; Scanning Ge
 - 6 FastScans; 2 mobile
 - 3 U/Pu Lung counters
 - None at NPPs

After accident

- US Military 60000 affected workers
 - 3 FastScans and one Accuscan-II installed at military bases
- TEPCO at J Village
 - 1 new FastScan, 1 mobile from JAEA
- Fukushima Prefecture and other locations
 - >50 FastScans
 - >17 of them Mobile
 - "defacto" standard for population measurements



Population in-vivo counting - children

- WBCs designed for radiation workers adults
- Fastscan has constant efficiency for 99th percentile males [75"] to 1st percentile females [57"]
- Used prototype version of ISOCS software to simulate child-size BOMAB phantoms.
- If short people stand on 1.20 platform, results within model height 15% for all subject sizes 1.10 when using a single adult Reference Man **BOMAB** calibration 1.00 Platform Subject Height [cm] Height [cm] WIT. 80-89 27

20

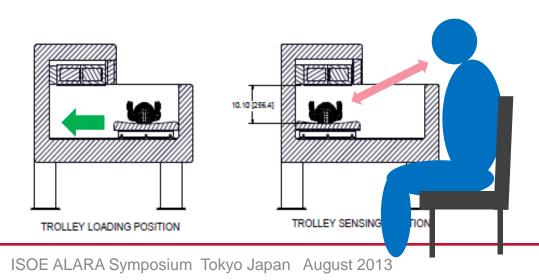
12

CONT. 95TH PER. MALE

CANBERRA

50

90-109


110-125

Population in-vivo counting - babies

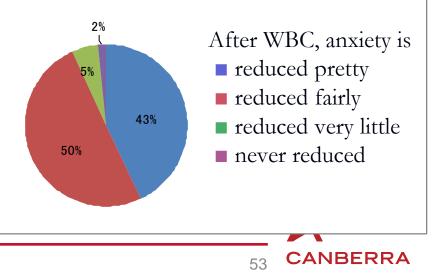
- Babies are very important to their parents
- Babies have less mass than adults, less Cs134-137
- Babies can't stand up in FastScan, and if they could would not like it
- Population counts criticized; didn't detect K-40 therefore Cs results suspect

EVELECAN

- Design proposed is similar to horizontal FastScan; 4 large detectors
- Need shielding above counter to reduce background
 - Cs 134/7 on roofs; K40 in building walls and ceiling
- Opening allows parent to see and touch child
- Three units to be built; local shielding manufacturer

WBC of residents by JAEA at Tokai

- Asked by Fukushima prefecture
- 3000 July, Aug 2011
- 4000 Sep Jan 2012
- 20,000 total present
- 2 FastScans + Chair WBC
 - 100 per day average
- Process:
 - Registration
 - Explanation of process
 - Surface contamination check
 - ♦ WBC
 - Dose calculation
 - Explanation of results !!


Communication

The result was explained to a residents by JAEA expert in a manner of interview or phone consultation.

Many residents replied that WBC and consultation is effective for reduction of anxiety on radiological health effect.

Reduction of anxiety survey

Dose Pathways

Very good report by WHO

Indicates distribution of internal dose

External, Inhalation, Ingestion

Preliminary dose estimation

from the nuclear accident after the 2011 Great East Japan Earthquake and Tsunami

Table below: EXT / INH / ING

Group	Dose range	Adult	Child	Infant
Close-in to NPP	1-50 mSv	<mark>90</mark> /10/0	<mark>80</mark> /10/10	<mark>80</mark> /10/10
In FU pref	1-10 mSv	50/0/50	50/0/50	20/0/80
Nearby pref	0.1-10	<mark>80</mark> /0/20	<mark>80</mark> /10/10	<mark>80</mark> /0/20
Rest of Japan	0.1-1	30/0/70	30/0/70	20/0/80

THINGS WE CAN DO BETTER

ISOE ALARA Symposium Tokyo Japan August 2013

Things we can do better 1/3

Environmental monitoring stations that are better for accidents

- All 3 Rx accidents had most releases from un-monitored points
- Autonomous power for operation and data communication
- Iodine collection even better if active measurement
- Air mover is a challenge currently high power devices; maybe lower power lower sensitivity w/o power is OK
- Iodine Thyroid measurement capability for large scale rapid deployment, easy for "untrained" operator
 - Short T¹/₂ nuclides to not cause problems
 - Procedures to do good measurements in elevated background areas
- Portable laboratories to take near to accident site
 - Radiochemistry, radiation measurement, in-vivo, contamination
- Rapid response to public fears reduce public anxiety
 - Measure and report: in-vivo adults and babies, pets, other treasured items
 - Far earlier than done here

Things we can do better 2/3

Accepted values on re-occupation of evacuation zone

- Inform users of age-specific risk, as compared to others that they accept
- Inform users how to minimize their radiation dose
- Give them tools to minimize, and feel better recording personnel dosimeter, area doserate meter, food counter, routine in-vivo counts and health checks

Make rad instruments easy for "untrained" people to use

- Contamination monitors rather than hand-frisking
- Concept of stable background unrealistic
- Background is elevated, variable in time, variable in space

Reactor instrumentation that can survive accidents and reliable give the status of the core

Multiple instruments, independent, alternate power sources

Gamma cameras that are practical

 Light weight; wide dynamic range [or low and high models]; no off-axis false response

Internationally accepted and common standards for radioactivity in food and on export/import of products

Things we can do better 3/3

- Need training process for large number of non-technical radiation measurements done by general public
 - E.g. YouTube videos on how to use, how to survey, how to check cal, …
- Better portable spectroscopy instruments
 - More smart and automatic
 - Easily configurable [automatic?] for "normal" and "accident" conditions
 - This may be a good area for these new high res'n scint detectors

Reality check about all these instrumentation improvements:

- Accidents don't drive commercial companies to make new instruments
- Instruments ONLY for accident use won't be useful during accidents; best to design instruments for routine use that can also be used in accidents

Minimize evacuations

- ~600 people died from the trauma of the evacuation
- Make KI available earlier to workers and population

