

Overview

- Initiating events
- Requirements
- Procedure
- Results
- Outlook
- Conclusions

Initial event 1: Hot workshop intake air chiller drain

Initial event 2: Cold condensate storage tank vent

- Cold condensate containing I-131 after fuel failures
- Changes in water level push lodineair out of tank vents
- Contamination found outside RCA

A review of the RCA boundary ?

- HSK = Hauptabteilung für Sicherheit der Kernanlagen = Swiss regulator
- HSK-requirement: "A comprehensive review of the entire RCA boundary has to be performed"
- Guideline requirement: "Radioactive effluents may cross the RCA-boundary only on licensed pathways, controlled and compared to release limits"
 - Licensed pathways: Ventilation to stack, Radwaste discharge
 - Controlled: Any instrument reading [cps]
 - ☆ Compared to release limits: qualified sampling and counting reading [Bq]

Gentlemans Agreement with HSK

- Identified unlicensed pathways with existing release: reportable event
 - Existing release = contaminated pathway
 - Amount of release doesn't matter. Everything above background.
- Identified unlicensed pathways without release: general amnesty
 - Aim: No penalty for serious review

Consequences

- Review of the Hot Workshop took 2 years, about 0.3 man-year
- Involved: Radiation protection, ventilation engineer, radwaste engineer, civil engineer
- A radiation protection engineer was hired to manage the further project
- Review building by building
- Reporting to HSK every 6 months

Interfaces between radioactive and non-radioactive systems

- WANO-Peer-Review 2005: "Some interface do not have isolation provisions to prevent contamination of the non-radioactive system"
- What is an "isolation provision" to provide a "safe" interface?
- A safe interface consists of two barriers (two-barrier-concept):
 - A Check-valve
 - ☆ A reliable pressure difference
 - Integrity of component (like a tight heat exchanger tube)
 - Radiation monitor in non-radioactive system (Only under certain circumstances)

Additional tasks:

Review of RCA - Penetrations: Procedure

- 1. Search and identification of penetrations through RCA boundary
 - 1) Walk Downs in the field
 - 2) Discussions with RP/Engineering-staff to gather operational experience
- 2. Verify the the identified penetrations in the as-built documentation
- 3. Assessment of the findings
- 4. Suggest technical solutions to improve unacceptable situations
- 5. Report to Plant Safety Committee and HSK
- 6. Follow up of plant modifications

Penetrations: Turbine building findings

- A total of 205 penetrations were evaluated
- Rainwater drain lines crossing the RCA

• Vertical penetration through turbine building foundation

 Emergency ventilation exhaust

Penetrations: Reactor Auxiliary Building findings

- Reactor Aux Building = RCA
- 2 ventilation concepts:
 - o **ECCS-rooms:** Ventilation to stack, qualified radiation monitors
 - Other rooms (hallways, diesels etc.):
 Ventilation to roof, no qualified radiation monitors)
- Ventilation to the environment without qualified radiation monitoring is a violation of RCArequirements per se

Penetrations: ECCS maintenance

- Maintenance of ECCS-pumps in Aux-building hallway
 - Maintenance of a heavily contaminated
 component without proper ventilation flow stack
 has the risk of a real release via unlicensed
 pathway
- Temporary solution 2008 and 2009:
 - o Tent around maintenance location
 - o mobile HEPA-filters
 - Redirect ventilation flow from tent to ECCSrooms
- Final solution to be discussed

Penetrations: cold condensate storage building

- New roof
- New ventilation
- New coating inside
- 2.5 million \$
- New part of the RCA

Penetrations: miscellaneous findings

- Abandoned tube for electric cables in Radwaste building wall
- Open penetration through RCA-boundary

Different types of penetrations

Folie 18

Confusing? Radwaste ventilation!

2009 ISOE ALARA Symposium/EPRI RP Conference

Interfaces: Findings in the turbine building

- Make up water outlets:
 - o Coupling fits to various types of hoses
 - o 1. Barrier = pressure difference
 - o 2. Barrier = non existant

o Solution: Additional check valve for each outlet

- Underlying problem:
 - o Non radioactive systems, whose content is used inside and outside of RCA
 - o Examples: fire water, make up water, aux steam, compressed air, service air

Interfaces: Findings in the Radwaste

- Interface between cold condensate (radioactive) and make up water (nonradioactive):
 - o 1. barrier = non existant (similar system pressure)
 - o 2. barrier = non existant
- Valves are not considered to be a barrier, because their position can be "open" or "closed"

Interfaces: Special situations

• Some parts of systems can't be protected with reasonable effort

- Drinking water system inside Hot Lab
- Water supply of Hot Laundry
- Parts of Auxiliary steam system

- Those parts of systems are "sacrificed"
 - Possible contamination is taken into account
 - Documentation for future modifications and decommissioning

Work progress

• Review completed

- o Hot workshop
- o 10 kV-Switchyard
- o Cold condensate storage
- o Turbine building
- o Seismic gap between buildings
- o Steam tunnel
- o Off-gas building
- o Radwaste building
- o Containment

Review in progress

- o Auxiliary building
- o Fuel handling building
- o Waste storage building
- o Stack

Conclusions

- Until now a workload of 3 man-years was generated
- Approx. 2/3 of the project is completed
- A dozen of plant modifications has been triggered
- The understanding in plant and systems design has improved among engineers and Radiation Protection
- A review like this will be part of the new plants licensing process
- KKL has become safer with regard to inadvertent release of radioactive material

Questions?