

UNIT 4 BOILER 6

Pickering 'A' HOT PARTICLE RECOVERY – THE JOURNEY

Presented by: Chris Glover

Health Physicist Pickering 'A' Radiation Protection

PICKERING NUCLEAR GENERATING STATION 'A'

Pickering, Ontario, Canada (30 Minutes From Downtown Toronto) Operating Since 1971

Pickering 'A' - Unit 4

September 2008

➢Unit is Shut Down For a Forced Outage

Routine Leak Search in Boiler Room Commences

Rad Tech Discovers Gamma Field of 500 mrem/h in an area that is typically 2 mrem/h. Later discovered that a worker doing the leak search had a peak EPD Rate of 4900 mrem/h.

Surveys were devised to pinpoint location of Hot Spot in a maze of pipe work and boilers (steam generators) approximately 80 feet by 20 feet.

Surveys identified the source of the unusually high dose rate was coming from the cold leg drain line at the bottom of Boiler 6.

Survey Results

How Can We Retrieve This Particle and How Do We Control the Area Around the Particle ?

PROBLEMS WITH RETRIEVING and DEALING WITH THE PARTICLE

Personnel can't get to within 10 ft of the area.
General Fields are 3.5 rem/h at that distance

- Dose Rates at working distance are 300 to 500 rem/h
- Securing the Area and Calming the Fears of Station Personnel

Area is very congested and tight for space.

Examples of Barricades Erected

ADMINISTRATIVE CONTROLS AND WARNINGS

- Immediate Communiqués To Station Staff- Message relayed through daily meetings and logs. (Outage and Plan of the Day Meetings and warnings put in Shift Manager and ANO logs.
- Op Memos on File Establish parameters and guidelines for performing work in RB. This includes during regular outages, forced outages, and potential on power entries.
- Educate Station Staff Presentations and briefing cards prepared for pre-jobs. Update JHSC members immediately.
- Access Desk Briefings Package established for briefing all station staff before entering RB.

What were the problems?

- Poor rad tech response to initial findings. What could be done to correct these casual behaviours? What measures can be implemented to avoid this again in the future?
- Station Staff did not respond to EPD alarms. Forensic audit of EPD dose rate alarms after the fact revealed 6 dose rate alarms between Saturday night until barriers were erected on Monday morning. Unusually high. What actions are needed to avoid this in the future?
- No official forum to document actions in detail every step of the way. Critical information when dealing with CNSC, WANO later. How can this be captured?

What were the problems (continued)?

- Robust barriers around the area of boiler 6 weren't established until the next forced outage on November 9. Reliance on regular access control procedures and barriers. Were they robust enough?
- Ops Memos had to be updated frequently due to conflicts with station procedure and restrictive and rigid wording in the memo. It was difficult to find the balance between safety and production.
- Communiqués at the beginning used words like; 'death, lethal, killed.' Be careful on wording as to not cause unnecessary panic among station staff. What wording could have been used instead?
- Staff station did not understand at first the debris location and its' ability to continue travel to other parts of the PHT system. What could be done sooner to quell these fears?

The Execution

Plan must utilize distance as a primary dose control method.

Dose is too high to utilize time.

Shielding would interfere with extraction methods

Solution

Robotics to Be Utilized

Plan is to Go Under the Boilers, Create an Ice Plug and Cut Out the Particle

Then transport remotely to an in station flask (ISF)

MEET THE ROBOTS!!

Robots on this page were not available due to prior work commitments, being destroyed, distance to travel, some were too hostile or the fact that we found out they were fictional!

KINECTRICS

Gamma Camera Cart

Used to Find and Triangulate Source Location Before Cut and During Ice Plug Formation

Dienep - PIXAR

Insulation Removal <u>Robot</u>

Used to cut insulation and refitted with other tools to remove it.

Mater

PEOPLE POWERING THE FUTURE HOT PARTICLE RECOVERY

KINECTRICS

Contingency Robot

Used to assist and save the other robots if they got stuck or couldn't complete a cut. Used for insulation removal.

Optimus Prime

KINECTRICS

HOT PARTICLE RECOVERY

Freeze Cut Cart Robot

This robot equipped with freeze jacket. Clamps onto pipe, creates ice plug, cuts, caps, and transports to a intermediate flask.

HMPF

Step 1 – Remove Insulation

Insulation Removal Continued...

• 23

Step 2 - Verify Source

Step 3 - Freeze and Cut Pipe Section

Freeze and Cut Pipe Section Continued...

Saw Blade Making Final Cut

GENERATION

Step 4 -Transport Cut Piece to Intermediate Flask

Step 5 - Deposit Into Instation Flask

- 6 mrem/h @ 1m from ISF on the sides

-Initially 18 rem/h beam coming from top of open ISF.

-After lead shot fields cut to 7 mrem/h

Step 6 - Secure and Shield in the ISF

Dose Received From Work

-Total Dose From Execution in Unit 4 was 163 mrem. Job ran 3 days late. Only 12 mrem to crew securing flask.

-Average Dose Rate Workers Were in was <5mrem/h.

-Highest Peak Rate to Worker was a momentary 200 mrem/h

RADS - 31489-B6 HotSpt									1
<u>File Edit Maps Cameras Options Help</u>									
Name		ED #	Dose	Rat∈	Dose /	Rate Al	Statu	Age]
CASIMIR MA	RC T	58334	7	0	300	2000	ок	00:39	
TAYLOR NEI	LT-	60829	6	1	300	2000	ок	00:02	
HILL IAN T -	Tr	66025	7	1	300	2000	oĸ	00:08	
SUESSMAN	CARL T	72699	6	0	300	2000	oĸ	00:02	
VAN BOVEN T T -		671514	8	11	300	2000	oĸ	00:03	
SIM DEREK T - T		25153	5	0	300	2000	oĸ	00:04	
BURANY STE	PHEN .	686730	5	0	300	2000	oĸ	00:09	
VERZILOV YURY T		12373	0	0	300	2000	OK	00:03	
HUSSEY CECIL T		26739	1	0	300	2000	oĸ	00:03	
COTE STEPH	HANE T	30097	0	0	300	2000	oĸ	00:01	
HAMILTON TONY T		30203	0	0	300	2000	oĸ	00:01	
BURTON DONALD T		33127	0	0	300	2000	oĸ	00:03	
CORBIN GLEN T -		33406	1	0	300	2000	OK	00:07	
LANGLOIS MICHAEL		37642	0	0	300	2000	OK	00:02	
HOOPER MARK T -		58167	1	0	300	2000	OK	00:02	
GLOVER CHRIS T -		96181	0	0	300	2000	OK	00:02	
JONES CHRIS T -		671582	0	0	300	2000	OK	00:02	
SCOTT RODGER T -		672784	1	0	300	2000	oĸ	00:04	
MCALPINE D	AVID T	672912	0	0	300	2000	oĸ	00:13	
DESJARDINS	5 DAVIE	673760	0	0	300	2000	oĸ	00:01	
RADS - 31155									
<u>File E</u> dit <u>M</u> aps ⊆ameras <u>O</u> ptions <u>H</u> elp									
Name	ED #	Dose F	Rate	Dose A	Alar Rate	Aları <mark>Statı</mark>	IS Age	Comme	
ARM - ISF East	55524	46671 1	2	50000	2000	OK	00:01		
Boiler 6 & 10	670594	226546 7		50000	0 5000	0 DOS	E 00:04		
Boller 5 & 6 ABM_ISE West	57546 697035	94426 /		50000	0 5000		E 00:02		
Boiler 11 & 12	25488	2386 9	,	50000	0 5000	0 OK	00:00		
ARM SDC HX3	687284	289 2	2	50000	2000	LOS	18:56		
									T

We went 'Fission' and This Was the Big 7 Ton Tuna we Snagged!! It took 20 months but we finally reeled him in!

Safely in the Flask!

Discussion!

Pickering - Unit 4 - Boiler 6 - September 2008

