

FIATECH

3D Radiation Exposure Modeling Tool for ALARA Planning: Kewaunee Pilot

Mike Hale, Dominion Phung Tran, EPRI

Sharon Bickford, FIATECH
Bill Lehmbeck, Dominion
Ted Rahon, PhD, Co Physics
Paul Saunders, Suncoast Solutions
Dennis Quinn, DAQ

RP 2020 Technology Development: 3D EDE ALARA Planning Tool (in collaboration with FIATECH)

Phase 1: EPRI Dose Calc. Module (Sector Funds)	Phase 2: Field Testing of Prototype Tool	Phase 3: Field Demo at NPP of Final Tool	Integrate w/Location Tracking System	
2010	2011	2012	??	
Objective:	 Work with FIATECH and 3D Technology Providers to develop a prototype for the <u>next generation</u> ALARA and work planning tool. 			
Description:	industries to enha	 Leverage and adapt advanced 3D technologies from other industries to <u>enhance work planning</u> and provide more <u>accurate dose estimation</u>. 		
	 Future: Integrate with remote monitoring systems for dynamic monitoring of work activities. 			
	 Optimize work activities and work flow 			
Benefits:	• • • • • • • • • • • • • • • • • • •	 Develop "What-if" scenarios to identify radiation field reduction opportunities to further reduce worker dose and 		

 3 year project, started in 2010 (2010 scope funded by Nuclear Sector)

document options.

ALARA Planning- Outline

Ideal: Maintenance Planning = ALARA Planning

- Prepare work plan, understand tooling, number of workers, duration, locations, etc.
- Radiation Sources
- Estimate dose received by workers
- Evaluate possible efficiency and dose reduction methods

Typical Dose Estimating Methodology

- Maintenance Planning provides info on man-loading
 - 2 people, 5 days (8 hr/day)
 - Total time = 80 man-hr
- ALARA Planner
 - Takes total time (80 man-hr) and applies a reduction factor such as ¼ to give ~ 20 hours to estimate time on location.
 - Takes the adjusted time and uses an estimated dose rate (assume 30 mrem/hr x 20 hr = 600 mrem)

Plant B Radiological Survey Map

Goals for Project

Project Goals:

- Provide a more rigorous methodology and process for estimating the dose rate for a worker at a location based on routine survey/radiation field measurements
- Estimate worker dose or EDE based on ALARA, "what-if" optimization scenarios.
- 3. Work with FIATECH and vendors to develop standard software implementation protocols that encourages "plug and play"

Tentative Project Schedule

2010-2011

- Review and develop dose algorithms
- Internal algorithm validation and lab testing
- Provide dose calculation subroutines to FIATECH/vendor(s)
- Vendors to begin development of a prototype for pilot test
- Work with host utility and their vendor to plan plant demo
- Perform demo and analyze results

2012

- Larger demo with final prototype
- Document final demonstration (EPRI Technical Report and software executable- publicly available)

Organization Responsibilities

FIATECH

- Oversee and coordinate solution providers (vendors)
- Provide technical input
- Develop user specs
- Demonstrate software to validate dose algorithm
- Produce final deliverable

EPRI

- Develop dose algorithm
- Establish project schedule
- Provide user input for specs
- Select utility to host demo site for Case Study
- Prepare final report

Vendor responsibilities

Participants:

Bentley Systems, CSA, Dassault Systemes, Siemens

- Willingness to collaborate with other vendors to develop tool
- Interaction with host site personnel and users to develop specs for development of the tool
- Participation in Team Meetings, both virtual and on-site
- Provision of on-site technical support for demonstration
- Resolution of post-demonstration issues prior to completion of final deliverable
- Hand over of final prototype deliverable

EPRI Dose Rate Algorithm- Basic Description

Method utilizes the 3-dimensional locations of radiation survey readings, shield information, possible source locations, and worker position(s) --- Development Lead: Ted Rahon, PhD, CHP

- <u>Localization</u> of these objects is facilitated by <u>3rd-party laser scanning</u> systems and software.
- <u>User inputs:</u> 1) radiation survey data and 2) possible positions of accumulated radioactivity (i.e., "sources") based on technicians' knowledge of the "hotspots" in the area or room.
- Estimated amount of radioactivity (iterative regression analysis).
 From these radioactivity estimates, the resultant radiation field is then calculated at the worker position. Goodness-of-fit parameters are then used to estimate the uncertainty of the final dose rate estimate at the worker location.

Dose Estimation Algorithm Flow Chart

EPRI Dose Algorithm: Preliminary Laboratory- Based Test Results

Input (Vendor):

- Dose rate survey measurements (x, y, z)
- User identified potential sources, mean energy, shielding
- Worker location (x, y, z)

Output (Vendor):

- Estimated source activity
- Estimated Dose Rate at a non-measured location

Host Site Selection

 2011: pilot, 2012: full scale maybe different sites and/or different reactors

Site Requirements:

- Laser scanned room or 3D model of room
 - Required for visualization aspect of project
 - Required for accurate dimensioning of sources and shields
 - Supports accurate x,y,z for survey data
- Accurate radiological survey data
- Accurate survey maps (<u>drawn to scale</u>)
- Pre-demonstration site visit
- Site access for team
- Approval by management

Pilot Test at Kewaunee

- Pilot Test
 - Select a model task
 - Perform surveys, as needed
 - Perform "typical" ALARA planning for task (engage maintenance, ALARA Planners, etc in process)
 - Perform ALARA planning using beta version of prototype (engage maintenance, ALARA Planners, etc)
 - Perform task
 - Compare estimates to actuals
 - Interview participants to understand their level of "confidence" with each type of ALARA planning methodology

