Lessons Learned from an Airborne Alpha Contamination Event Requiring Implementation of In-Vitro Sampling

Oconee Nuclear Station OE #32020

Amanda P Stevenson

Duke Energy Carolinas

January 2011

Duke Energy - ONS

- Implemented EPRI Alpha Guidelines in 2008
- Alpha Level II Plant, with identified Alpha Level III Systems and Components
- Station Weighted Alpha DAC of 5E-12 μCi/mL
- Station β - γ DAC Fraction Action Level of 0.025

Removal of a Hot Spot

- Known Alpha Level III System
- Original RP Prescribed Job Controls:
 - Job air sample collected (2 cfm)
 - Lapels worn by workers (0.14 cfm)
 - HEPA used for contamination control (1000 cfm)
 - Portaband used for cutting primary system piping
- All Air Sample Results < 0.025 β - γ DAC

- Rework requires additional cuts into primary piping
- RP Job Controls (Alpha Level II):
 - Job air sample collected (2 cfm)
 - HEPA used for contamination control (1000 cfm)
 - Portaband used for cutting primary system piping
- Air Sample Results < 0.025 β - γ DAC

- Job Scope:
 - Buff exterior of existing primary piping ends
 - Socket weld new pipe section into place
- RP Job Controls (Alpha Level II):
 - Job air sample collected (2 cfm)
 - HEPA used for contamination control (1000 cfm)
 - Pipe ends decontaminated to 15,000 dpm $\beta\text{-}\gamma$ and 15 dpm α
 - Respirator (voluntary use) for buffing

- RP Count Room identifies Am-241 in gamma spec, reporting 24 DAC β - γ .
- Lead Technicians assume air sample cross contaminated and inadvertently destroy air sample while isolating "particle".
- Investigation determines buffing technician used cutting wheel on side grinder to cut 1 inch section of original primary piping without consulting RP.

Event Data

- Air Sample Results:
 - 23.98 DAC β - γ of which 23.93 DAC Am-241
 - Gross alpha counts could not be obtained to determine total DAC due to destruction of air sample filter
 - Gamma spec of respirator cartridge and removed pipe section also identified Am-241
 - Gamma spec of new welding rod did not have 59 keV peak
- Smear Sample Results:
 - Inside primary piping 200,000 dpm $\beta\text{-}\gamma$ and 559 dpm α (Activity Ratio of 358)
 - Grinding dust pile 200,000 dpm β - γ and 2,627 dpm α (Activity Ratio of 76)
 - Removed pipe section 16,000 dpm β-γ and 639 dpm α (Activity Ratio of 25)

Event Data

- Primary resin 10CFR61 alpha distribution used to estimate:
 - Gross alpha activity of 1.72E-10 μCi/mL
 - Total alpha DAC of 39
 - DAC Ratio of 780
 - Preliminary internal dose of 220 mrem CEDE
 - 1 hour lung detector MDA for Co-58 of 0.5 nCi
 - Internal Retention Fraction for Co-58 in lungs
 - Inhalation

Bioassay Challenges

- Destroyed Air Sample
 - Estimated preliminary internal dose calculation
 - ANI criteria for collecting in-vitro samples of 200 mrem CEDE.
 - NRC PI criteria for unintended exposure of 100 mrem
 CEDE

- In-Vivo Measurement No Detectible Activity
 - Unable to determine Inhalation versus Ingestion

Bioassay Challenges

- Procedure for in-vitro sample collection limitations:
 - Inventory of sample collection kits
 - Inventory of ice chests for individuals to transport samples
 - Elapsed time for sample collection start
 - Duration of sample collection
 - On-site storage of samples until complete
 - Requested analysis of samples by contract laboratory
 - Shipping requirements as radioactive material
 - Shipping requirements from contract laboratory
 - Internal dose calculations from analysis results

- In-vitro sample collection to start immediately
- Collect minimum number of total samples from each individual
 - Aids inhalation versus ingestion retention modeling
- Samples stored in freezer until collection complete
- Requested analysis of samples:
 - Individual sample analysis
 - Gamma spectroscopy
 - Am-241, Pu-238, Pu-239/240, Cm-242, Cm-243/244
- Gamma Spectroscopy requirements for shipping samples
- Samples shipped frozen in cooler

- Internal Dose Calculations from In-Vitro Sample Results:
 - Samples analyzed individually to ensure sufficient collection

- Internal Dose Calculations from In-Vitro Sample Results (cont):
 - Summed nuclide results to obtain total nuclide activity for composite of samples
 - Assumed zero activity for samples where nuclide was below detection limits
 - Determined NUREG 4884 Internal Retention Fraction in accumulated feces for inhalation of each nuclide based on time between intake and final collected sample
 - Determined Internal Retention Fractions and Committed Dose Equivalent Factors for inhalation based on the 10CFR21 recommendations in oxide form: Am-241 (W), Cm-242 (W), Cm-243/244 (W), Pu-238 (Y), Pu-239/240 (Y), Co-58 (Y), Co-60 (Y), Cs-137 (D), Nb-95 (Y), Zr-95 (W)
 - Assumed Internal Retention Fractions for Cm-243/244 (W) were same as Cm-242 (W)
 - Assumed Internal Retention Fractions for Zr-95 (W) was same as Zr-91 (W).

- Internal Dose Calculations from In-Vitro Sample Results (cont):
 - Alpha nuclide distributions from individual's combined samples consistent with each other and with 10CFR61 Primary Resin sample results

- Recognizing and Minimizing Risk associated with Alpha Contamination:
 - Created process for screening all work requests
 - Identifies jobs with potential for high smearable or airborne alpha contamination
 - Determines proper Management over-site for at-risk jobs
 - Incorporates Management approval of job controls in place for at-risk jobs
 - Included clear and concise examples of what can NOT be done during job scope discussions in briefings
 - For the worker: NO grinding, beating, heating, welding, etc without contacting RP
 - For the RP Technician: NO grinding, beating, heating, welding, etc on known or suspected Level III areas without respiratory protection or Supervisor approval

- Recognizing and Minimizing Risk associated with Alpha Contamination (cont):
 - Increased use of glove bags as engineering control

- Training and Awareness:
 - Site Management
 - Time and resource impact of proper planning, control, and execution of high risk alpha contamination jobs
 - Regulatory, liability, time, and resource impact of improper planning, control, and execution of high risk alpha contamination jobs
 - General Workforce
 - Significance of alpha contamination hazard
 - Where and how come in contact with alpha contamination hazard
 - Responsibility for properly mitigating alpha contamination hazard
 - Clear and complete job scope descriptions during briefings
 - Notifying RP when job scope changes or conditions change
 - Use engineering controls provided by RP
 - RP Technicians
 - Importance of identifying Am-241 and the effects that identification has on procedure action levels

Questions

Oconee Nuclear Station OE #32020

Amanda P Stevenson Duke Energy Carolinas January 2011

