

2014 North American ISOE ALARA Symposium

Development of On-Line Co-60 Monitoring System

Hirofumi Matsubara Hitachi-GE Nuclear Energy, Ltd.

Jan. 14th 2014 Ft. Lauderdale, Florida

- 1. Background
 - a. Need for Co-60 monitoring
 - b. Development history
- 2. Monitoring system
 - a. Principal of coincidence method
 - b. System configuration
- 3. Performance demonstration
- 4. Summary

Need for On-line Co-60 Monitoring

On-line Co-60 monitoring system can provide dose rate around RRS piping during BWR plant operation.

(1) Optimization of zinc injection rate(2) Improvement of outage work planning

Conventional Monitoring Method

	Drywell	
	Inside	Outside (R/B, etc.)
Dutage	 BRAC Measurements 	Survey MeterArea Monitor
Power Operation	• Nothing	Area Monitor

RRS: Reactor recirculation system

Source : Co-60 contaminated RRS piping

Need for On-line Co-60 Monitoring

On-line Co-60 monitoring system provides feedback of dose rate changes caused by water chemistry conditions.

- Goal of the study is to improve the understanding of the effects from:
 - SCRAMs
 - OLNC injections
 - Co-60 transients (i.e. from fretting/wear of Stellite[™] components)
 - Hydrogen trips
 - Changes in zinc levels

Environment inside drywell

	Measurement nuclide Co-60	Interference nuclide N-16
Existing location	RRS piping	Reactor water
Gamma ray energy	1173, 1332keV	6129, 7110keV
Doco rato	10 ~ 1000 mR/h	5000 mR/h
Dose rate	(Pipe surface dose rate)	(Atmosphere)

Principles of Coincidence Method

Discrimination of Co-60 from the background radiation is accomplished by coincidental signals from two detectors.

System configuration

Detect cascade gamma-ray from Co-60 using two detectors in coincidence method.

2nd Demonstration in Research Reactor[※]

Confirmed this system can discriminate Co-60 radiation.

Results of Research Reactor Demonstration **HITACHI**

GE)

Moving average of 20 measurements meets desired \pm 30% of accuracy.

Performance of the proposed plant system HITACHI

- Based on the results from the research reactor and the expected conditions inside a BWR drywell, the lower limit of detectability (LLD) was evaluated for a measuring period of 2 weeks.
- Measuring period is determined by the trade-off between detection limit and accuracy.
- An initial baseline period is required to establish the desired LLD and accuracy; this baseline period will depend on plant specific conditions.

Parameter	Desired Performance
Measuring Period	2 weeks
Lower Limit of Detectability	0.5 μCi/cm²
Measuring Accuracy	< ± 30%

Depiction of Co-60 Dose Rate

The system continuously displays data during reactor operation.

Summary

We have developed the on-line Co-60 monitoring system.

- The system can detect Co-60, using two detectors and the coincidence method of Co-60 cascade gamma-rays under N-16 background.
- The system was evaluated at the research reactor.
 ⇒ The increase in coincidence counts with the detection of Co-60 was confirmed.

Thank you for your attention