## Decommissioning project, management and planning aspects for the decommissioning of Research Reactor Ispra1

<u>Elena Amoroso</u>, Daniela Manes, Silvano Ravera, Katsavos Harralabos, Paolo Capoferro, Elio Grossi ISOE Symposium Tours, France 21-23 June

) む

Rome, 23/06/2022

- Introduction and motivation
- Dismantling strategy of <u>ISPRA1 Research Reactor</u>
  - Historical Information
- PHASE 1: Dismantling of Systems and Components
  - Description of SC covered by PHASE I of decommissioning
  - Phase I Activities Performed:
    - Preliminary Dose Assessments to workers
    - $\circ~$  Analysis of the results of Destructive Analysis measurements on SC
- PHASE 2: Dismantling of Systems and Components
  - Activation Evaluations using MCNP5 Code
  - Dose Rate Evaluations using MCNP5 Code
- Conclusions

# Introduction and motivation

The present work illustrates the study conducted for the:

- evaluation of the residual radiological contamination assessed by <u>DA assays</u>
- <u>activation calculations</u> with the Monte Carlo N-Particle Transport Code

in order to obtain

## The Decommissioning Plan of ISPRA1 Research Reactor

and demonstrate the feasibility and reliability of the planned operations in terms of:

- contamination / activation management for waste minimization
- preliminary dose assessments to optimize <u>occupational exposures</u> through the application of the ALARA principle

ALARA "as low as reasonably achievable" objectives:

- No work incidents
- No nuclear incidents (no release of radioactive substances into the environment, no on-site cross contamination, no internal human contamination, etc.)
- Minimal collective and individual doses according to the ALARA principle

# Introduction and motivation



**1) Occupational doses in Decommissioning of a Research Plant** 

2) Optimization of the operative techniques foreseen in the cutting station

3) Management of materials according to radiological characteristics

are determined by a large number of parameters, including:

- The study of Experiments in Nuclear Field
- Activation
- Contamination
- Deposits of radionuclides; hot-spots
- Radiometric measurement
- Geometry of shielding
- Self-shielding of components
- Planning of tasks
- Behaviour of workers

# **Historical Information**



Sogin submitted to the Ministry of Economic Development on 29/04/2020 an application for authorization to

**Dismantling the Ispra1 Reactor** pursuant to Article 55 of Legislative Decree 230/95.





The <u>Ispra-1 Research Reactor</u> belongs to the **CP5** Argonne type, moderated and cooled with heavy water and with graphite as a neutron reflector.

The fuel used was of the **MTR type** with 19 lamellae per element in U-Al alloy enriched approximately 90% in U-235; the cylindrical core (60 cm high and 84 cm in diameter) was made up of 18 fuel elements and surrounded by heavy water which acted as moderator/reflector.

The heat produced was transferred by means of heat exchangers to a secondary light water circuit with a cooling tower. The reactor could produce a thermal power of **5 MW** and was equipped with a control and safety system consisting of 6 vertical control bars and one for regulating.



aspea

nning

# **Historical Information**





## **DISMANTLING STRATEGY OF ISPRA1 REASEARCH REACTOR**



Sogin has developed a strategy for decommissioning the Ispra1 Research Reactor, divided into preparatory activities and in three distinct phases

## Phase 1

collection of historical information, radiological characterization of the plant, cleanout and possibly clearance of large and small components used in research experiences, dismantling activities of the systems and components of the primary and secondary cooling circuits external to the Reactor Pile, storage pit and hot cell;

### Phase 2

validation of the activation calculations and evaluation of the levels of contamination for the design and dismantling of the Reactor Pile, the dacay pool with the hot cell, the channel connecting the two facilities and the horizontal and vertical storage pits

## Phase 3

Final Radiological Survey and Final Release.



#### SYSTEM AND COMPONENTS AFFECTED BY CONTAMINATED PROCESS FLUIDS

The process of dismantling the systems / components of PHASE I present in the radiological impacted areas of the Ispra1 Plant involve the management of quite considerable quantities of materials of different nature, with different characteristics and with different radioactivity content, mainly due to contamination.

aspects for

planning oral

σ

σ

D

S

ommi

Δ

0

the de

| Reactor Building IO |                                               |             |             |  |  |
|---------------------|-----------------------------------------------|-------------|-------------|--|--|
| ID Systems          | Systems/Component                             | Weight [kg] | Volume [m3] |  |  |
| 1001                | Main Coolant D2O System                       | 7404.4      | 6212.7      |  |  |
| 1002                | D2O Clean-up System                           | 604.2       | 0.1         |  |  |
| 1003                | Reactor Vessel gage glass System              | 98.9        | 0.5         |  |  |
| 1004                | Radiation Monitoring System                   | 167.3       | 0.0         |  |  |
| 1010                | Helium cover gas System                       | 3203.5      | 7.4         |  |  |
| 1011                | Recombiner Helium System                      | 829.5       | 0.3         |  |  |
| 3001                | Secondary Coolant System                      | 7530.8      | 1.9         |  |  |
| 1005                | Reactor off-gas System                        | 226.3       | 0.1         |  |  |
| 2010                | Shield cooling water System                   | 1722.6      | 13.7        |  |  |
| 2011                | Shield cooling clean-up H2O System            | 118.5       | 0.0         |  |  |
| 2030                | Graphite Nitrogen System                      | 2295.0      | 7.1         |  |  |
| 1012                | Rig Helium System                             | 99.3        | 0.1         |  |  |
| 2020                | Experimental facilities cooling System        | 1756.4      | 9.9         |  |  |
| 2021                | Experimental facilities clean-up H2O System   | 306.7       | 0.1         |  |  |
| 2022                | Rig cooling System                            | 247.2       | 0.1         |  |  |
| 4001                | Organic coolant loop System                   | 1646.9      | 1.3         |  |  |
| 4010                | Organic hot drain system                      | 1912.7      | 1.3         |  |  |
| S001                | CECILE main coolant loop system               | 721.7       | 1.0         |  |  |
| S002                | CECILE secondary cooling system               | 1226.5      | 0.7         |  |  |
| S011                | RABBIT Helium system                          | 7157.9      | 12.5        |  |  |
| 2040                | Active/Dubious effluents System               | 2116.1      | 0.9         |  |  |
| 2100                | Decay Pool cooling System                     | 1164.6      | 0.7         |  |  |
| 2110                | Decay Pool clean-up H2O                       | 141.1       | 0.1         |  |  |
| 5002                | Ventilation exhaust & Reactor off gas system  | 4479.3      | 7.5         |  |  |
|                     | Building Annex A 21n (I1)                     |             |             |  |  |
| 2040                | Active/Dubious effluents System               | 3376.5      | 12.0        |  |  |
|                     | Building B (I2)                               |             |             |  |  |
| 0010                | Manipolatori cella gamma                      | 801.1       | 0.3         |  |  |
| 2110                | Gamma Cell components (internal and external) | 2853.5      | 0.1         |  |  |
| 2040                | Decay Pool clean-up H2O                       | 506.7       | 0.2         |  |  |
| 5010                | Gamma cell Air ventilation System             | 3725.1      | 7.3         |  |  |
| Total               | System 2040                                   | 5999.3      | 13.2        |  |  |
| Total               | System 2110                                   | 2994.5      | 0.3         |  |  |
|                     | Total phase I dismantling Systems- Ispra1     | 58440.3     | 6299.9      |  |  |

# PHASE I DISMANTLING SYSTEMS AND COMPONENTS)<sup>50GI</sup>

1) Radiometric monitoring campaign with direct measurements of dose rate and total surface contamination aimed at the classification of the areas

2) Radiological characterization and radiochemical analysis campaign

## made it possible

- to consolidate the list of reference radionuclides,
- to define in a definitive form the homogeneous groups and the related Correlation Factors,
- to define the distribution of residual radioactivity, update the radiological inventory of the plant and
- Carry out preliminary dose assessments for the subsequent dismantling phases.



## 1) Preliminary dose assessments for Phase I SC dismantling

The estimate of the **doses to personnel for Phase I activities** was prepared on the basis of a preliminary assessment of the required manpower effort





## 1) Preliminary dose assessments for Phase I SC dismantling

The table shows the estimates of the <u>effective annual doses</u> for the operator (maximum value) and the <u>annual collective doses</u> as a function of the dismantling macro-activities.

| Team        |                 |                                                          |                                                              | Effective dose operator   |                            |                         |                            |                  |  |
|-------------|-----------------|----------------------------------------------------------|--------------------------------------------------------------|---------------------------|----------------------------|-------------------------|----------------------------|------------------|--|
|             |                 | Activity description                                     |                                                              | (mSv/year)                |                            |                         |                            | mSv tot          |  |
|             |                 |                                                          |                                                              |                           | Year 2°                    | Year 3°                 | Year 4°                    | TOTAL            |  |
|             |                 | Preliminary Activities                                   | System revamping                                             | 0.42                      |                            |                         |                            | 0.61             |  |
|             |                 | Tremmary Activities                                      | Facility preparation                                         |                           |                            |                         |                            | 0.01             |  |
|             | Teem 1          |                                                          | Free articles management                                     | 0.13                      | 0.06                       |                         |                            |                  |  |
|             | (3 operators, 2 | Dismantling System<br>and Components<br>Reactor Building | Dismantling SC (q.ta -2.40 m)                                |                           | 0.13                       |                         |                            |                  |  |
|             | technicians)    |                                                          | Dismantling SC (q.ta +0.00 m)                                |                           | 0.37                       | 0.45                    |                            | 1.01             |  |
|             |                 |                                                          | Dismantling (q.ta +4.40 m)                                   |                           |                            | 0.07                    |                            |                  |  |
|             |                 | Dismantling System                                       | Dismantling SC Building B (pond and gamma cell)              |                           |                            | 0.13                    | 0.25                       |                  |  |
|             | Team 2          | and Components<br>external Reactor                       | Removal of radioactive effluent storage tanks(21f)           | 0.10                      | 0.17                       | 0.07                    |                            | 0.82             |  |
| technicians | technicians)    | Building                                                 | Removal of active liquid collection tanks Annesso A (ed 21n) |                           |                            | 0.10                    |                            |                  |  |
|             | Collective Dose | Total Dismantling Phase I                                |                                                              | l anno<br>(man*mSv/y<br>) | ll anno<br>(man*mSv/<br>y) | III anno<br>(man*mSv/y) | IV anno<br>(man*mSv/y<br>) | TOT<br>(man*mSv) |  |
|             |                 |                                                          |                                                              | 2.09                      | 2.31                       | 2.62                    | 0.79                       | 7.81             |  |

# SOGIN

## 2) Analysis of the results of DA measurements on SC



## 2) Analysis of the results of DA measurements on SC

|            | Reactor Bu                                    | ilding (IO)       |            | -          | -          | -                       |
|------------|-----------------------------------------------|-------------------|------------|------------|------------|-------------------------|
|            |                                               | Internal surface  | N° samples | N° samples | N° samples | тот                     |
| ID Systems | Systems/Components                            | [m <sup>2</sup> ] | IBERDROLA  | SOGIN      | TOT        | m <sup>2</sup> /samples |
| 1001       | Main Coolant D2O System                       | 125.799           | 7          | 3          | 10         | 13                      |
| 3001       | Secondary Coolant System                      | 66.963            | 1          | 1          | 2          | 33                      |
| 1002       | D2O Clean-up System                           | 9.037             | 3          | 4          | 7          | 1                       |
| 1003       | Reactor Vessel gage glass System              | 6.579             | 3          | -          | 3          | 2                       |
| 1004       | Radiation Monitoring System                   | 2.597             | 2          | 1          | 3          | 1                       |
| 1005       | Reactor off-gas System                        | 2.458             | 1          | -          | 1          | 2                       |
| 1010       | Helium cover gas System                       | 28.396            | -          | 2          | 2          | 14                      |
| 1011       | Recombiner Helium System                      | 8.484             | 3          | -          | 3          | 3                       |
| 1012       | Rig Helium System                             | 2.896             | -          | 1          | 1          | 3                       |
| 2010       | Shield cooling water System                   | 93.297            | 1          | 1          | 2          | 47                      |
| 2011       | Shield cooling clean-up H2O System            | 2.168             | -          | 1          | 1          | 2                       |
| 2020       | Experimental facilities cooling System        | 67.281            | -          | 4          | 4          | 17                      |
| 2021       | Experimental facilities clean-up H2O System   | 5.276             | 1          | -          | 1          | 5                       |
| 2022       | Rig cooling System                            | 5.707             | 1          | -          | 1          | 6                       |
| 2030       | Graphite Nitrogen System                      | 13.385            | -          | 2          | 2          | 7                       |
| 4001       | Organic coolant loop System                   | 35.128            | 1          | 1          | 2          | 18                      |
| 4010       | Organic hot drain system                      | 24.703            | 2          | 2          | 4          | 6                       |
| S001       | CECILE main coolant loop system               | 14.432            | 1          | 1          | 2          | 7                       |
| S002       | CECILE secondary cooling system               | 15.235            | 1          | 1          | 2          | 8                       |
| S011       | RABBIT Helium system                          | 96.275            | 2          | 5          | 7          | 14                      |
| 2040       | Active/Dubious effluents System               | 41.663            | 1          | -          | 1          | 42                      |
| 2100       | Decay Pool cooling System                     | 15.580            | 1          | 5          | 6          | 3                       |
| 2110       | Decay Pool clean-up H2O                       | 2.692             | 1          | -          | 1          | 3                       |
| 5002       | Ventilation exhaust & Reactor off gas system  | 90.436            | 2          | -          | 2          | 45                      |
| TOTALE     |                                               | 776.468           | 39         |            | 70         | 11                      |
|            | Building Anne                                 | x A 21n (l1)      |            |            |            |                         |
| 2040       | Active/Dubious effluents System               | 51.570            | 4          | 3          | 7          | 4                       |
| TOTAL      |                                               | 51.570            | 4          |            | 7          | 4                       |
|            | Building                                      | ; B (I2)          |            |            |            |                         |
| 2040       | Active/Dubious effluents System               | 12.447            | 1          | 1          | 2          | 6                       |
| 10         | Gamma Cell components (internal and external) | 3.473             | 1          | -          | 1          | 3                       |
| 2110       | Decay Pool clean-up H2O                       | 40.307            | 2          | 4          | 6          | 7                       |
| 5010       | Gamma cell Air ventilation System             | 112.307           | 4          | -          | 4          | 28                      |
| TOTAL      |                                               | 168.535           | 10         |            | 13         | 13                      |
|            | Building                                      | 21f (I5)          |            |            |            |                         |
| 2040       | Active/Dubious effluents System               | 322.474           | 3          | 4          | 5          | 46                      |
| TOTAL      |                                               | 322.474           | 3          |            | 5          | 46                      |



Classes: Public Use, Internal Use, Controlled Use, Restricted Use

SOGIN

# aspects fo 0 σ ese O Φ Ō the

## PHASE I DISMANTLING SYSTEMS AND COMPONENTS

## 2) Analysis of the results of DA measurements on SC



i.e. System

in P&ID

for:

System (red)

Rdiation

(green)

SOGIN



2) Analysis of the results of DA measurements on SC

From the elaboration of the totality of the radioanalytical determinations carried out in the context of both characterization campaigns the scaling factors of the plant

| Not Acivated Materials                |              |                    |    |  |  |
|---------------------------------------|--------------|--------------------|----|--|--|
| Scaling Fact                          | Standard     | n° valid           |    |  |  |
| Scaling Facto                         | Deviation 2σ | measures           |    |  |  |
| <sup>3</sup> H/ <sup>60</sup> Co      | 4.6E-01      | $D_{FC}^{2} = 5.6$ | 15 |  |  |
| <sup>55</sup> Fe/ <sup>60</sup> Co    | 1.2E-02      | $D_{FC}^{2} = 3.4$ | 4  |  |  |
| <sup>14</sup> C/ <sup>60</sup> Co     | 1.7E+00      | $D_{FC}^{2} = 5.5$ | 17 |  |  |
| <sup>63+59</sup> Ni/ <sup>60</sup> Co | 3.0E+01      | $D_{FC}^{2} = 5.5$ | 31 |  |  |
| <sup>90</sup> Sr/ <sup>137</sup> Cs   | 7.1E-01      | $D_{FC}^{2} = 5.2$ | 21 |  |  |
| <sup>241</sup> Pu/α-emitters          | 5.0E-01      | N.A.               | /  |  |  |
| α-emitters/ <sup>137</sup> Cs         | 4.8E-03      | $D_{FC}^{2} = 6.0$ | 10 |  |  |

\*(the set of measures used is understood to be updated as of 31/12 2021).

### **ACTIVATED MATERIALS**

### The materials covered by Phase II of dismantling are

- The materials of the <u>Reactor Pile</u> which, having been subjected to neutron flux, are <u>activated</u> <u>materials</u>
- vessel,

aspects for

ment and planning eactor Isprat

esear

d Q

- graphite reflector
- thermal shield
- biological shield

There is currently no real characterization for these materials. An exception is the biological shield from which two samples ("coring") were taken and subjected to destructive tests.

- the activated materials that were extracted from the reactor during the exercise which are found in the so-called "horizontal pit" and "vertical pit":
- plugs,
- irradiated components deriving from pile experiments,
- control rods

There is currently no real characterization for these materials but only dose rate measurements on the basis of which the radioactivity content of gamma emitters has been estimated.

### 1) Activation evaluation using MCNP5 code

As part of the characterization investigations neutron activation calculations were performed using the Monte Carlo N-Particle Transport Code

The main features of the model, included in the input file are:



1) Activation evaluation using MCNP5 code – Reactor Pile Volume section



1) Activation evaluation using MCNP5 code

### Activation Calculation Results – 31/12/2021

| Component  | Reflecor                | Thermal Shield       | <b>Biological Shield</b> | Upper<br>Plug+steel plug | Experimental<br>Channel | Total    |
|------------|-------------------------|----------------------|--------------------------|--------------------------|-------------------------|----------|
| Celle MCNP | 5, 7                    | 10 ÷ 17              | 100 ÷116, 18, 19         | 20÷ 23, 26,<br>28÷30     | 32, 33                  |          |
| Material   | Graphite                | Lead,Carbon<br>Steel | Baritic Concrete         | Lead,Carbon<br>Steel     | Alluminium              | [Bq]     |
| C-14       | 2.51E+11                | 3.01E+08             | 5.95E+08                 | 1.89E+09                 | 3.06E+07                | 2.54E+11 |
| Eu-152     | 6.41E+08                |                      | 3.95E+08                 | 8.13E+08                 |                         | 1.85E+09 |
| Eu-154     | 9.04E+06                |                      | 6.09E+06                 | 1.28E+07                 |                         | 2.79E+07 |
| Co-60      | 9.73E+08 <sup>(</sup>   | 3.99E+04             | 6.84E+09                 | 1.48E+11                 | 6.21E+09                | 1.61E+11 |
| Ba-133     | 1.06E+09 <sup>(1)</sup> |                      | 2.68E+10                 |                          | 6.57E+09                | 3.34E+10 |
| Ni-63      |                         | 2.34E+11             | 1.87E+10                 | 2.28E+12                 | 1.03E+05                | 2.54E+12 |
| Ni-59      |                         | 2.34E+09             | 1.86E+08                 | 2.27E+10                 | 2.29E+03                | 2.52E+10 |
| Pb-205     |                         | 2.68E+05             |                          |                          |                         | 2.68E+05 |
| Fe-55      |                         | 3.00E+09             | 2.68E+07                 | 3.85E+08                 | 3.35E+08                | 3.75E+09 |
| Mo-93      |                         | 1.48E+10             |                          |                          | 6.19E+05                | 1.48E+10 |
| Ca-41      |                         |                      | 1.02E+08                 | 2.37E+08                 |                         | 3.39E+08 |
| Total      | 2.52E+11                | 2.55E+11             | 5.36E+10                 | 2.46E+12                 | 1.31E+10                | 3.03E+12 |

2) Co-60 Source distribution

Calculated Co-60 activity have been imported into the model

The figure shows the distribution of the Co-60 source in the Reactor Pile.



2) Dose Rate Evaluations using MCNP5 Code

### WITH UPPER PLUG

### WITHOUT UPPER PLUG

The figures show the<br/>evaluated of Dose<br/>9,3-9\_5.9-7\_<br/>9,3-9\_Rate distribution in<br/>the Reactor Pile in two<br/>considered<br/>configuration:1.5-10\_<br/>2,3-12\_

with upper plug

Security Class:

without upper plug



\*[p/(cm2\*nps]\*[microSv/h\*cm2s] to be multiplied \*1.45+E11  $\gamma$ /s

Classes: Public Use, Internal Use, Controlled Use, Restricted Use

### 2) Dose Rate Evaluations using MCNP5 Code

- Dose Rates were calculated at the pile mid-plane (in contact with biological shield) and in contact with the upper plug center line.
- The same simulation was carried out in the same points but without the upper plug to evaluate the dose rate at the moment of opening the Reactor Pile. The result are shown in the following grid.

| Calculation Point        | With Upper Plug | Without Upper<br>Plug |  |
|--------------------------|-----------------|-----------------------|--|
|                          | Dose Rat        | e μSv/h               |  |
| 1 (In contact)           | 1.40E-01        | 1.35E-01              |  |
| 2 (at a distance of 1m)  | 1.48E+00        | 1.52E+00              |  |
| 3 (at a distance of 2m)  | 1.45E+00        | 1.46E+00              |  |
| 1° (In contact)          | 4.38E+00        | 1.29E+02              |  |
| 2° (at a distance of 1m) | 3.34E+00        | 9.37E+01              |  |
| 3° (at a distance of 2m) | 2.30E+00        | 6.70E+01              |  |



## Conclusions

- ➢ This paper will describe the activities carried out by Sogin through the characterization of the Plant and the activation calculations made it possible to determine the levels of residual radioactivity in Ispra1 in order to obtain the design of the dismantling interventions and optimize the associated radiation protection activities by refining the preliminary dose assessments.
- The use of MCNP Nuclear Codes is a suitable tool for optimizing dose assessments according to the ALARA principle, defined in the ICRP guidelines and the Directive 2013/59/Euratom on protection against dangers arising from exposure to ionizing radiation.
- Sogin strategy divided in <u>3 operational phases</u> were carried out in order not only to manage the waste materials but above all to guarantee an adequate level of safety of the operations carried out in terms of <u>radiation protection of workers in</u> <u>dismantling activities</u>.

# Thank you for your attention!