2016 North American ISOE ALARA Symposium Restart Status of Japanese NPPs, Filtered Containment Venting System (FCVS), New Regulatory Requirements & Super Engineer Education Project

Jan. 11, 2016

Dr. Tadashi NARABAYASHI President of Japan Society of Maintenology Professor, Hokkaido University

Restart Status of Japanese NPPs

🙀 Prof. Narabayashi, Hokkaido Univ., Japan

Prestart Status of Japanese NPPs

Restart Status of Japanese NPPs

🙀 Prof. Narabayashi, Hokkaido Univ., Japan

Sendai 1, 2 restarted in 2015

Restart Status of Japanese NPPs

Prof. Narabayashi, Hokkaido Univ., Japan 28

Congratulations for Restart Sendai NPP Unit 1 and 2 (890MWeX2)

HARD REPORT OF ST

🙀 Prof. Narabayashi, Hokkaido Univ., Japan

Dec. 10, 2015

29

Takahama 3, 4 are ready to restart

Restart Status of Japanese NPPs

🙀 Prof. Narabayashi, Hokkaido Univ., Japan 🛛 30

Protect CV and PCV cooling

CV Cooling: Mobile pump for cooling (Sendai NPS)

(1)CV Cooling unit (2)Seawater (3) CV Spray

CV Spray Pump

😹 Prof. Narabayashi, Hokkaido Univ., Japan 32

Water

Resilience for CV Cooling

Resilience for H2 Accumulation

Hydrogen Passive Autocatalystic

Reco

Heated Ignaiter

Tsunami Protection: Water proof door

Mortar Driven Water Injection Pump

Restart Status of Japanese NPPs

Diesel Engine Driven Water Injection Pump (Diversity is important)

Resilience for Water Injection: Motor Driven Pump (Diversity)

Restart Status of Japanese NPPs

Portable Water Supply Pumps for Resilience Action at Ikata NPS

Restart Status of Japanese NPPs

Resilience for CV damage:Water Cannon

Snorkel Building at Hamaoka

Measures for SA in BWR

MEXT Project for Nuclear Human Resource Development

Development of a high efficiency multi-nuclide aerosol filters for radiation protection during a process of cutting core debris at Hokkaido University

ů

🙀 Prof. Narabayashi, Hokkaido Univ., Japan 🛛 43

For Fukushima-Daiichi Decommissioning Radiation protection during a process of cutting core debris should be needed.

In order to develop an air clean up system for radiation protection during a cutting core debris of the Fukushima Daiichi NPP as a process of their decommissioning, a high efficiency filters should be developed, such as a wet-type aerosol filter, a metal fiber filter, a silver zeolite

Restart Status of Japanese NPPs

Advanced Liquid Processing System (ALPS)

Treat the contaminated water by removing radionuclides

750 Tons/day in first installed system

2,000

Tons/day with first installed system + additional system + high-performance system

120,000+ Tons of contaminated water processed so far

REMOVE SOURCES OF CONTAMINATION

Restart Status of Japanese NPPs

Contaminated Water Status

* Sampling was conducted on Nov. 5, 2013 (April 9 to 12, 2013 as for ALPS outlet water)

Robotics for Resilience Action at Fukushima Daiichi NPS

Restart Status of Japanese NPPs

Prof. Narabayashi, Hokkaido Univ., Japan 47

Inventory analysis for all the Radio Active Nuclides

Number of Neutron VS. Number of Proton Mapping Show decay of unstable nuclides after scrum

There are many aerosols except agonic lodine

I¹²⁹:Decay constant=16 million years, CH₃I may cause of thyroid cancer

Inventory of nuclide in Fukushima Daiichi Unit 2 1012-018 抜粋。

1		Oh	1h	3h	10h	1d	3d	10d	30d	90d	180d	1y	2y	5y	10y	20y
	2	Activatio	n													
2	C13	3.98E+2	3.98E+2	3.98E+2	3.98E+2	3.98E+2	3.98E+2	3.98E+2	3.98E+2	3.98E+2	3.98E+2	3.98E+2	3.98E+2	3.98E+2	3.98E+2	3.98E+2
	016	1.26E+7	1.26E+7	1.26E+7	1.26E+7	1.26E+7	1.26E+7	1.26E+7	1.26E+7	1.26E+7	1.26E+7	1.26E+7	1.26E+7	1.26E+7	1.26E+7	1.26E+7
J	017	5.12E+3	5.12E+3	5.12E+3	5.12E+3	5.12E+3	5.12E+3	5.12E+3	5.12E+3	5.12E+3	5.12E+3	5.12E+3	5.12E+3	5.12E+3	5.12E+3	5.12E+3
t	018	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.90E+4
1	Cr50	7.84E+2	7.84E+2	7.84E+2	7.84E+2	7.84E+2	7.84E+2	7.84E+2	7.84E+2	7.84E+2	7.84E+2	7.84E+2	7.84E+2	7.84E+2	7.84E+2	7.84E+2
1	Cr52	1.60E+4	1.60E+4	1.60E+4	1.60E+4	1.60E+4	1.60E+4	1.60E+4	1.60E+4	1.60E+4	1.60E+4	1.60E+4	1.60E+4	1.60E+4	1.60E+4	1.60E+4
2	Cr53	1.83E+3	1.83E+3	1.83E+3	1.83E+3	1.83E+3	1.83E+3	1.83E+3	1.83E+3	1.83E+3	1.83E+3	1.83E+3	1.83E+3	1.83E+3	1.83E+3	1.83E+3
	Cr54	5.13E+2	5.13E+2	5.13E+2	5.13E+2	5.13E+2	5.13E+2	5.13E+2	5.13E+2	5.13E+2	5.13E+2	5.13E+2	5.13E+2	5.13E+2	5.13E+2	5.13E+2
t	Fe54	2.79E+3	2.79E+3	2.79E+3	2.79E+3	2.79E+3	2.79E+3	2.79E+3	2.79E+3	2.79E+3	2.79E+3	2.79E+3	2.79E+3	2.79E+3	2.79E+3	2.79E+3
1	Fe56	4.56E+4	4.56E+4	4.56E+4	4.56E+4	4.56E+4	4.56E+4	4.56E+4	4.56E+4	4.56E+4	4.56E+4	4.56E+4	4.56E+4	4.56E+4	4.56E+4	4.56E+4
+		Actinide														
1	U234	1.75E+2	1.75E+2	1.75E+2	1.75E+2	1.75E+2	1.76E+2	1.77E+2	1.80E+2	1.89E+2	2.04E+2	2.34E+2	2.95E+2	4.76E+2	7.69E+2	1.32E+3
	U235	1.70E+6	1.70E+6	1.70E+6	1.70E+6	1.70E+6	1.70E+6	1.70E+6	1.70E+6	1.70E+6	1.70E+6	1.70E+6	1.70E+6	1.70E+6	1.70E+6	1.70E+6
2	U236	2.99E+5	2.99E+5	2.99E+5	2.99E+5	2.99E+5	2.99E+5	2.99E+5	2.99E+5	2.99E+5	2.99E+5	2.99E+5	2.99E+5	2.99E+5	2.99E+5	2.99E+5
	U237	4.38E+2	4.36E+2	4.32E+2	4.20E+2	3.95E+2	3.22E+2	1.57E+2	2.01E+1	4.46E-2	2.24E-3	2.18E-3	2.07E-3	1.80E-3	1.41E-3	8.72E-4
+	U238	8.91E+7	8.91E+7	8.91E+7	8.91E+7	8.91E+7	8.91E+7	8.91E+7	8.91E+7	8.91E+7	8.91E+7	8.91E+7	8.91E+7	8.91E+7	8.91E+7	8.91E+7
	Np237	2.40E+4	2.40E+4	2.40E+4	2.40E+4	2.40E+4	2.41E+4	2.43E+4	2.44E+4	2.44E+4	2.44E+4	2.44E+4	2.44E+4	2.45E+4	2.47E+4	2.53E+4
	Np239	5.03E+3	4.99E+3	4.88E+3	4.48E+3	3.77E+3	2.09E+3	2.67E+2	7.45E-1	3.46E-3	3.46E-3	3.46E-3	3.46E-3	3.46E-3	3.46E-3	3.46E-3
	Pu238	7.22E+3	7.22E+3	7.22E+3	7.23E+3	7.23E+3	7.26E+3	7.29E+3	7.35E+3	7.48E+3	7.62E+3	7.77E+3	7.83E+3	7.68E+3	7.39E+3	6.83E+3
	Pu239	3.84E+5	3.84E+5	3.84E+5	3.84E+5	3.85E+5	3.87E+5	3.89E+5	3.89E+5	3.89E+5	3.89E+5	3.89E+5	3.89E+5	3.89E+5	3.89E+5	3.89E+5
+	Pu240	1.23E+5	1.23E+5	1.23E+5	1.23E+5	1.23E+5	1.23E+5	1.23E+5	1.23E+5	1.23E+5	1.23E+5	1.23E+5	1.23E+5	1.23E+5	1.23E+5	1.23E+5
	Pu241	7.38E+4	7.38E+4	7.38E+4	7.38E+4	7.38E+4	7.38E+4	7.37E+4	7.35E+4	7.29E+4	7.21E+4	7.03E+4	6.70E+4	5.80E+4	4.56E+4	2.82E+4
1	Pu242	2.42E+4	2.42E+4	2.42E+4	2.42E+4	2.42E+4	2.42E+4	2.42E+4	2.42E+4	2.42E+4	2.42E+4	2.42E+4	2.42E+4	2.42E+4	2.42E+4	2.42E+4
	Am24	3.42E+3	3.42E+3	3.42E+3	3.43E+3	3.43E+3	3.45E+3	3.52E+3	3.71E+3	4.29E+3	5.15E+3	6.88E+3	1.02E+4	1.91E+4	3.13E+4	4.81E+4
1	Am24	4.03E+3	4.03E+3	4.03E+3	4.03E+3	4.03E+3	4.03E+3	4.03E+3	4.03E+3	4.03E+3	4.03E+3	4.03E+3	4.03E+3	4.03E+3	4.03E+3	4.02E+3
+	Cm24	7.31E+2	7.31E+2	7.31E+2	7.31E+2	7.31E+2	7.26E+2	7.05E+2	6.48E+2	5.02E+2	3.43E+2	1.56E+2	3.32E+1	4.30E-1	1.13E-1	1.08E-1
2	1129	1.14E+4	1.14E+4	1.14E+4	1.14E+4	1.14E+4	1.14E+4	1.14E+4	1.14E+4	1.15E+4	1.15E+4	1.15E+4	1.15E+4	1.15E+4	1.15E+4	1.15E+4
	Te130	2.41E+4	2.41E+4	2.41E+4	2.41E+4	2.41E+4	2.41E+4	2.41E+4	2.41E+4	2.41E+4	2.41E+4	2.41E+4	2.41E+4	2.41E+4	2.41E+4	2.41E+4
1	Xe130	3.61E+2	3.61E+2	3.61E+2	3.61E+2	3.61E+2	3.61E+2	3.61E+2	3.61E+2	3.61E+2	3.61E+2	3.61E+2	3.61E+2	3.61E+2	3.61E+2	3.61E+2
	Xe131	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.90E+4	2.91E+4	2.93E+4	2.94E+4	2.95E+4	2.95E+4	2.95E+4	2.95E+4	2.95E+4	2.95E+4	2.95E+4
+	Xe132	6.86E+4	6.86E+4	6.86E+4	6.87E+4	6.87E+4	6.88E+4	6.89E+4	6.89E+4	6.89E+4	6.89E+4	6.89E+4	6.89E+4	6.89E+4	6.89E+4	6.89E+4
1		1 I I	1 1 1	13 31	13 SL 15	- T 13 - 3	1 13 31	13 ST 1	- 31 - 13	T D D	13 31	1. I. I.	1 1 1	1. 1.	13 3L 15	

Restart Status of Japanese NPPs

🙀 Prof. Narabayashi, Hokkaido Univ., Japan 🛛 49

Metal Fiver Filter Test

High performance Metal Fiver Filter with AgX, supplied by RASA

 0.6µm BaSO4 25gX40 batches=1kg There are no particle at the down stream of the filter(DF>10,000)
Differential Pressure was almost constant

High Performance Filters for Multi-Nuclides

Wet Type Scrubbing Nozzle

Restart Status of Japanese NPPs

Dry Type: Metal Fiver Filter+AgX

Restart Status of Japanese NPPs

Metal Fiber Filter Test

Radioactive Organic Iodine Capture Test

Flow rate, Temerature, Humidity are parameters for the test

SEM-EDX Analysis Result in a AgX particle

Survey at Basement Floor of Unit 1 Reactor Building

Robots Survey and repair toward filling PCV with water

Investigation into Unit 3 Leakage Location

Note: the radiation monitor for the main steam pipe process is located between water pipes A and B and main steam pipes B ad C.

Investigation into Bottom of Unit 2 RPV (1/2)

Transformer Type Robot for Investigation debris at pedestal

 \ast As for (5), access from the outside of pedestal is also considered.

Investigation into Bottom of Unit 2 RPV (2/2)

Finding Core Debris by Robotics

Super Engineer Education Project MEXT Project for Nuclear Human Resource Development Super Engineer Education Project to Achieve Highest Safety at Hokkaido University

Restart Status of Japanese NPPs

🙀 Prof. Narabayashi, Hokkaido Univ., Japan 👘 61

Framework of the Project

■Collaboration of Universities, Electric Po, Co, Vendors

Number of Students Trained in this Project

Students	Maior	Numb	τοται			
Students	Wajor	FY 2015	FY 2016	FY 2017	IUIAL	
BS 1	All students in Hokkaido	—	50	50	100	
BS 2	Civil, Natural Resource, Environment, Electronic	100	100	100	300	
BS 3	Nuclear, Mechanical Engineering	120	120	120	360	
MS 1,2	Nuclear, Plasma, Radiation, Mechanical	0	70	70	140	
NPP Training	19 ATOM Universities	13	13	13	39	
Vendor R&D	19 ATOM Universities	13	13	13	39	
ISOE/Illinois	Excellent Students	5	5	5	15	
TOTAL		251	371	371	993	
Restart Status of Japanese NPPs Restart Status of Japanese NPPs Restart Status of Japanese NPPs						

Students Training Programs for Super Engineer

Restart Status of Japanese NPPs

🙀 Prof. Narabayashi, Hokkaido Univ., Japan

64

Training course : Filtered vent Test, Water Level Back fill, Water Injection, etc.

Cooperation with University of Illinois from 2015

TH TORAL MARKED

Mr. Takuma was trained at University of Illinois and he entered TEPCO last April

He said "I will help TEPCO to recover"

Conclusion

From the Lessons of Fukushima-Daiichi Accidents, Japanese NPP has installed safety measures, and Sendai 1 and 2 restarted in 2015. Several PWR will restart and Kashiwazaki-Kariwa(ABWR) will pass to restart, in 2016.

- Development of Filtered Venting System (FCVS) with silver zeolite has finished. Installation has started.
- Development of a high efficiency multi-nuclide aerosol filters for radiation protection during cutting core debris has already started at Hokkaido University as a MEXT project in Japan.
- Nuclear education is very important to improve the resilience technology and safety culture in the world.
- Super Engineer Education Project has started.

Restart Status of Japanese NPPs

🙀 Prof. Narabayashi, Hokkaido Univ., Japan 67