

UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation

ISOE International Symposium Tours, 21 – 23 June 2022

Occupational exposure to ionizing radiation: UNSCEAR Global Survey and ISOE DATA

Peter Hofvander, Chair Expert Group (Sweden)

Vincent Holahan, Senior Technical Advisor (USA)

Ferid Shannoun, Scientific Officer (UNSCEAR secretariat)

Vincent Holahan (<u>vincent.holahan@nrc.gov</u>) Ferid Shannoun (<u>ferid.shannoun@un.org</u>)

- Established by UN General Assembly (GA) resolution in 1955
- Scientists from 31 UN Member States
- Assess levels, effects & risks of ionizing radiation
 - identify emerging issues
 - improve knowledge
 - identify areas for future research
- Disseminate findings to UN GA, scientific community and public

Scientists from 31 UN States Members

- Algeria
- Argentina
- Australia
- Belarus
- Belgium
- Brazil
- Canada
- China
- Egypt
- Finland
- France
- Germany
- India
- Indonesia
- Iran (IR)
- Japan

- Mexico
- Norway
- Pakistan
- Peru
- Poland
- Rep. of
- Korea
- Russia
- Slovakia
- Spain
- Sudan
- Sweden
- Ukraine
- UAE
- UK
- USA

Input: Other Member States and international organizations provide relevant data and technical input

UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation

United Nations Scientific Committee on the Effects of Atomic Radiation

UNSCEAR 2020/2021 REPORT VOLUME IV: "Evaluation of occupational exposure to ionizing radiation"

United Nations Scientific Committee on the Effects of Atomic Radiation

SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION UNSCEAR 2020/2021 Report

Volume IV

REPORT TO THE GENERAL ASSEMBLY SCIENTIFIC ANNEX D: Evaluation of occupational exposure to ionizing radiation

۲

Timelines

- 2014: Committee endorsed the project plan
- 2016–2019: Secretariat conducted Global Occupational Exposure Survey
- 2021: Committee adopted the report
- 2022: Publication planned (Q3/Q4)

UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation

Sources of Information

- UNSCEAR Global survey
- ISOE database (first agreement in 2011)
- IAEA Power Reactor Information System
- World Nuclear Association
- National Reports
- Peer-reviewed literature

United Nations Scientific Committee on the Effects of Atomic Radiation **SURVEY.UNSCEAR.ORG**

Information System on Occupational Exposure

Evaluation of Occupational Exposure to Ionizing Radiation (2022)

- A major source of occupational exposure in the nuclear fuel cycle is the operation of nuclear reactors to generate electrical energy.
- Thirteen countries responded to the UNSCEAR Occupational Exposure Survey and provided occupational exposure data for operating commercial nuclear power reactors (2000–2014). Additional data on exposure of workers at operating nuclear power reactors was obtained from ISOE.
- The annex provides estimates of the magnitude of and temporal trends in the average annual collective effective dose and per capita effective doses, and the numbers of monitored workers.
- Very little extrapolation was needed for operating NPPs, as the data on annual collective effective dose were substantially complete; close to 100% for PWRs and GCRs, about 94% for BWRs, and 88% for HWRs.
- Overall, the estimated worldwide levels of average annual collective effective dose is fairly certain for much of the nuclear fuel cycle.

Dosimetry related questions for Member States

Recorde	HE:	DOE; NRC	E:	DOE; NRC	Hp:
Factor used to convert WLM to effective dose:	:				
Type of dosemeter mainly used:					
Value of minimum detectable level MDL (mSv):	DOE				
Value of recording level (mSv):	0.01-0.1 mSv				
Radiation background subtracted?	DOE and NRC: site dependent				
Are the external monitoring laboratories accredite accredited accreditation body or authorized by the regulator	DOE: YES, DOELAP; NRC: YES, NAVLAP				
Are the internal monitoring laboratories accredite accreditation body or authorized by the regulator	DOE: YES, DOELAP; NRC: none available				

United Nations Scientific Committee on the Effects of Atomic Radiation

United Nations Scientific Committee on the Effects of Atomic Radiation

International Labour Organization

YEAR	2014	United States of America												
Work sectors and categories		Workforce								Dose				
	Work Categories	NUMBER OF WORKERS IN DOSE INTERVALL Number Number							Number	Collective				
WORK SECTORS		< MDL	MDL-1	>1-5	>5-10	>10-15	>15-20	>20-30	>30-50	>50	All	>MDL	Female Workers	(man Sv)
	Total Nuclear Fuel Cycle	96450	39350	17459	2549	607		58	0	0	156473	60023		78.70
	Uranium mining													
	Underground mine													
	Openpit mine													
	Uranium milling	70	504	004	10					-	004	044		
	Uranium conversion	70	531	264	16	0		0	0	0	881	811		0.85
	Uranium enrichment	2447	86	0	0	0		0	0	0	2533	86		0.01
	Fuel fabrication	1503	1948	/53	75	2		0	0	0	4281	2778		2.77
	Reactor operation	73451	32932	15507	2380	589		58	0	0	124917	51466		71.27
CICLL	Permanent staff													
	Contractors	2004	574	201	11	16					2710	925		
		2004	101	12	44	10		0	0	0	959	104		1.11
	Preserve in publication and	004	101	15	0	0		0	0	0	000	194		0.07
	Wasto management	3920	1160	371	4	0		0	0	0	5455	1535		1 1 2
	Vasie management	0020	1100	0/1	-7	0		0	5	9	0700	1000		1.13
	Transport within nuclear fuel cycle													
	All other activities in nuclear fuel cycle	11511	1938	350	30	0		0	0	0	13829	2318		1.49

Occupational Exposure Data available in ISOE Database

Country	Plant unit	Туре:	Utility	Year	Status	Validation
Switzerland	Beznau 1	PWR	AXPO	2014	Operational	Validated
Switzerland	Beznau 2	PWR	AXPO	2014	Operational	Validated
Switzerland	Gösgen 1	PWR	KKG	2014	Operational	Validated
Switzerland	Leibstadt 1	BWR	KKL	2014	Operational	Validated
Switzerland	Mühleberg 1	BWR	BKW	2014	Operational	Validated

United Nations Scientific Committee on the Effects of Atomic Radiation

ISOE Database - Table D

Calvert Cliffs 1 & 2 USA Calendar Year 2014 Distribution of annual effective external dose								
Dose Interval	(mSv)	Number of individuals in dose interval exposed to external radiation						
Lower Bound >	Upper bound < =	Plant Outside No Total personnel personnel breakdown						
Not measu (dose =	urable 0)			158	1587			
Meas.	1.000			392	392			
1.000	2.500			122	122			
2.500	5.000			59	59			
5.000	7.500			11	11			
7.500	10.000			2	2			
10.000	20.000							
20.000	30.000							
30.000	40.000							
40.000	50.000							
50.000	100.000							
Tota				2173	2173			

Recording level – 0.100 mSv

Challenges Using Data in the Evaluation of Occupational Exposure to Ionizing Radiation (2020/2021)

- Several challenges with integrating the two data sources:
 - Understanding differences in dosimetry reporting
 - Formatting responses (different exposure intervals)
 - Accounting for not measurably exposed workers
 - Accounting for transient (temporary) workers
- Some extrapolations required to account for unreported exposures Break down of exposure by reactor type (not requested or supplied)
- Incomplete data sets (e.g., decommissioning)

Summary

- The number of workers and the collective effective dose at civilian nuclear power plants is increasing, but the average annual effective dose for measurably exposed workers decreased for the time period 2000-2014.
- Data for this time period was substantially complete for NPP operation because of data available from ISOE.
- Greater uniformity of data reporting would improve data interpretation.
- Extension of ISOE/UNSCEAR agreement planned for 2023.

Expert Group on Occupational Exposure

Chair

• P. Hofvander (Sweden)

Senior Technical Advisor

• V. Holahan (United States)

Lead writers

- C. Lawrence (Australia)
- J. Chen (Canada)
- U. Oeh (Germany)
- T. Rosentreter (Germany)
- D. Kluszczynski (Poland)
- D. Melo (United States)
- S. Simon (United States)

Members

- M. Bercikova (Czechia)
- S. Saigusa (Japan)
- N. Juto (Japan)
- F. Ortega (Mexico)
- G. de With (Netherlands)
- J. Kim (Republic of Korea)
- S. Seo (Replublic of Korea)

Secretariat

• F. Shannoun (UNSCEAR)

Observers

- J. Ma (IAEA)
- H. Okyar (IAEA)
- T. Zodiates (ILO)
- A. Jahnen (Luxembourg)

Critical reviewers

- D. de Souza Santos (Brazil)
- D. Chambers (Canada)
- G. Frasch (Germany)
- E. Salminen (Finland)
- I. Lund (Sweden)
- H. Okyar (IAEA)

United Nations Scientific Committee on the Effects of Atomic Radiation

Thank you!

www.unscear.org